
1

Perl Programming Language:

Essential Scripting Basics for the

13CFLUX2 Advanced Course

This document is a quick introduction to the Perl language. Perl has many features, but this
document is about the basics that are necessary to follow the 13CFLUX2 exercises. The
coverage of the text is pretty quick, intended for people with a bit of programming experience.
In the final chapter four examples are given. You should be able to write scripts for
13CFLUX2 if you understand these examples. Of cause, there are countless excellent
textbooks or electronic sources about the Perl language available, e.g.
http://www.perltutorial.org. Visit the Comprehensive Perl Archive Network (CPAN),
http://www.cpan.org/, or http://www.perl.com/ to find a rich source Perl material available.

1. Introduction: What is Perl?

2. Comments

3. Important data structures

3.1. Scalar variable

3.2. Array -- @

4. Loop and term/ condition structures

4.1. If-control structure

4.2. For-loop statement

5. Useful functions/ commands

5.1. Print

5.2. System

6. Example scripts

7. References

Parts of these text where just taken from internet sources specified at the end of the
manuscript.

2

1. Introduction: What is Perl?

Perl is a free, open source programming language created by Larry Wall in the 90’ies. Perl
stands for Practical Extraction and Reporting Language. Perl aims for adjectives like
"practical" and "quick" and not so much words like "structured" or "elegant". Perl is probably
best known for text processing -- dealing with files, strings, and regular expressions. Perl's
quick, informal style makes it attractive for all sorts of little programs. That’s the reason why
we choose it in the context of this course.

1.1. Running Perl

A Perl program is just a text file. You edit the text of your Perl program, and the Perl
interpreter reads that text file directly to "run" it. On Unix, the Perl interpreter is called "perl"
and you run a Perl program by running the Perl interpreter and telling it which file contains
your Perl program...

> perl [perlscriptname.pl] [ARGV1] [ARGV2] … [ARGVN]

The interpreter makes one pass of the file to analyze it and if there are no syntax or other
obvious errors, the interpreter runs the Perl code. There is no "main" function -- the interpreter
just executes the statements in the file starting at the top.

Every Perl script starts with the following first line (giving a hint to Linux to use the Perl
interpreter to execute the code within this file):

#!/usr/bin/perl

By default, the Perl compiler does not warn about possibly erroneous code. Thus, you need to
be careful to keep local and global variables straight. There are at least two tools to help Perl
programmers write maintainable code: the strict pragma and the warnings pragma.” strict
and warning are probably the two most commonly used Perl pragmas, and are frequently
used to catch "unsafe code." When Perl is set up to use these pragmas, the Perl compiler will
check for, issue warnings against, and disallow certain programming constructs and
techniques. In Perl (5.6.0 or later), pragmas are set up with the use command:

use strict;
use warnings;

The strict pragma checks for unsafe programming constructs. strict forces a
programmer to declare all variables as package or lexically scoped variables. The programmer
also needs to use quotes around all strings.

The warning pragma sends warnings when the Perl compiler detects a possible
typographical error and looks for potential problems. There are a number of possible warnings
(check the man pages or ActiveState's perldiag document page), but warnings mainly look for
the most common syntax mistakes and common scripting bugs.

For short, without the use of these both pragmas, you will inevitably waste time debugging
some trivial variable name mixup or syntax error.

Besides, at the end of every command line beside the first line a semicolon (;) is accepted.

3

2. Comments

Comments begin with a "#" and extend to the end of the line. The line is then ignored by the
Perl interpreter and can be used to describe certain parts of code.

For instance:

this is a comment
my $this_is_a_variable_definition = ‘some value’; # here is another comment

3. Important Data Structures

There are three primary data structures in Perl: the scalar, the array, and the associative
array, or short “hash”. The latter data structures are not in focus of this course.

 Scalar variable:
(my) $scalar
declaration/name of a scalar variable, a single element (number or string), with name
scalar

 Array/ List:
(my) @array
declaration/name of an array with name array

 Hash:
(my) %hash
declaration/name of an hash with name hash

If you first define either a scalar, array, or hash, you can use the my keyword to denote that it
belongs to a particular scope in which it is defined. This will prevent you from many bugs in
the future. It is not mandatory to use the my parameter, expecting strict pragma is active.
All variables, whether they are a scalar, array, hash, or other type, are CASE-SENSITIVE,
meaning that $myvariable and $MYVARIABLE are treated as two different variables.

3.1 Scalar variables

Scalar data is the one of the most basic and simplest data structure in Perl. Scalar data can be
number or string. In Perl, string and number can be used nearly interchangeable. Scalar
variable is used to hold scalar data. Scalar variable starts with dollar sign ($) followed by the
Perl identifier. Perl identifier can contain alphanumeric characters and underscores. It is not
allowed to start with a digit.

Example:

$var = 2; # scalar variable $var set to the number 2

3.1.1 Number

Perl uses double-precision floating point values for calculation. Perl internally cheats integer
as floating-point value. I.e., if Perl has a number or other type when it wants a string, it just

4

silently converts the value to a string and continues. It works the other way too – a string such
as "42" will evaluate to the integer 42 in an integer context. Perl uses a minus sign (-) to
define negative number. Here is the code snippet to demonstrate scalar variable $x which
holds the number 3.14 in Perl etc.:

 #floating-point values

 my $x = 3.14;

 $y = -2.78;

 #integer values

 $a = 1000;

$b = -2000;

Perl also accepts string literal as a number for example:

$s = "2000"; # similar to $s = 2000;

In this case $s can be used as a number for calculation even though it is a string.

3.1.2 String

Perl defines a string as a sequence of characters. The shortest string contains no character or
null string. The longest string can contain unlimited characters which is only limited to
available memory of your computer. Strings constants are enclosed within double quotes (")
or in single quotes ('). Strings in double quotes are treated specially -- special directives like
\n (newline) and \x20 (hex 20) are expanded. More importantly, a variable, such as $x,
inside a double quoted string is evaluated at run-time and the result is pasted into the string.
This evaluation of variables into strings is called interpolation and it's a great Perl feature.
Single quoted (') strings suppress all the special evaluation -- they do not evaluate \n or $x,
and they may contain newlines.

For example:

$str = “this is a string in Perl“
$str2 = ’this is also a string in perl’

$filename = "willi.txt";
$a = "Could not open the file $filename."; # $fname evaluated
$b = 'Could not open the file $filename.'; # single quotes (') do no
special evaluation
$a is now "Could not open the file willi.txt."
$b is now "Could not open the file $filename."

3.1.3 Assigned Arguments

Assigned arguments are also scalar variables and can be addressed by:

$ARGV[0], $ARGV[1],…

3.1.4 Operations on scalar variables

Perl uses arithmetic operators like other languages as C, C++ or Java. Here is the code snippet
to demonstrate operations on numerical scalar variables:

 $x = 5 + 9; # Add 5 and 9, and then store the result in $x

 $x = 30 - 4;# Subtract 4 from 30 and then store the result in $x

5

 $x = 3 * 7; # Multiply 3 and 7 and then store the result in $x

 $x = 6 / 2; # Divide 6 by 2

 $x = 2 ** 8;# two to the power of 8

 $x = 3 % 2; # Remainder of 3 divided by 2

 $y = ++$x; # Increase $x by 1 and store $x in $y

 $y = $x++; # Store $x in $y then increase $x by 1

 $y = --$x; # Decrease $x by 1 and then store $x in $y

 $y = $x--; # Store $x in $y then decrease $x by 1

 $x = $y; # Assign $y to $x

 $x += $y; # Add $y to $x

 $x -= $y; # Subtract $y from $x

 $x .= $y; # Append $y onto $x

The dot operator (.) concatenates two strings.

$x = 3;

$c = "he ";

$s = $c x $x;

$b = "bye"; # $c repeated $x times

print $s . "\n"; #print s and start a new line

similar to

print "$s\n";

$a = $s . $b; # Concatenate $s and $b

print $a;

3.2 Array -- @

Array constants are specified using parenthesis () and the elements are separated with
commas. Perl arrays are like lists or collections in other languages since they can grow and
shrink, but in Perl they are just called "arrays". Array variable names begin with the at-sign
(@). Unlike C, the assignment operator (=) works for arrays -- an independent copy of the
array and its elements is made. Arrays may not contain other arrays as elements. Arrays work
best if they just contain scalars (strings and numbers). The elements in an array do not all
need to be the same type.
Example:

@str_array = ("Perl",1,2,5,"array");

Square brackets [] are used to refer to elements, so $a[6] is the element at index 6 in the array
@a. Array indices start at zero (0).
$str_array[1];

Notice that for accessing an array element the dollar sign ($) is used instead of at sign

You can add or remove elements to/ from an array. Here is a list of functions that allows you
to do common operations on an array:

push(@array,$element) add $element to the end of an array @array

pop(@array) remove the last element of an array @array and returns it.

unshift(@array,$element) add $element to the start of an array @array

6

shift(@array) remove the first element from an array @array and returns it.

Be careful, Perl arrays are not bounds checked. If code attempts to read an element outside the
array size, undef is returned. If code writes outside the array size, the array grows
automatically to be big enough.

4 Loop and term/ condition structures

4.1 If Control structure

Perl's control syntax looks like C's control syntax. Blocks of statements are surrounded by
curly braces { }. Statements are terminated with semicolons (;). The parenthesis and curly
braces are required in if/ while/ for forms.

{ #statements here

 { # nested block

 # statements here

 }

}

There is not a distinct "boolean" type, and there are no "true" or "false" keywords in the
language. Instead, the empty string, the empty array, the number 0 and undef all evaluate to
false, and everything else is true. The logical operators &&, ||, ! work as in C. There are also
keyword equivalents (and, or, not) which are almost the same, but have lower precedence.

if control structure is used to execute a block of code based on a condition. The syntax of if
control structure is given below:

if(condition){

 statements;

}

If the condition is true the “statements” inside the block will be executed, for example:

$x = 10;

$y = 10;

if($x == $y){

 print "$x is equal to $y";

}

In the line 1 and 2 we define two variables $x and $y with their values “10”. In line 4 we
use an if statement to print a message if $x is equal $y. The message is only printed if the
expression $x == $y is evaluated as “ true”. In Perl, everything is true except the number
zero (0), empty strings, empty arrays, and undef.

If you need an alternative choice, Perl provides if-else control structure:

if(condition){

 if-statements;

}

else{

 else-statements;

7

}

If the condition is false the else-statements will be executed. Here is the code example:

$x = 5;

$y = 10;

if($x == $y){

 print "x is equal to y";

}

else{

 print "x is not equal to y";

}

And another source code example:

$x = 5;

$y = 10;

if($x > $y){

 print "x is greater than y";

}

else if ($x < $y){

 print "x is less than y";

}

else{

 print "x is equal to y";

}

Operator Example Defined Result

==,eq
5 == 5
5 eq 5

Test: Is 5 equal to 5? True

!=,ne
7 != 2
7 ne 2

Test: Is 7 not equal to 2? True

<,lt
7 < 4
7 lt 4

Test: Is 7 less than 4? False

>,gt
7 > 4
7 gt 4

Test: Is 7 greater than 4? True

<=,le
7 <= 11
7 le 11

Test: Is 7 less than or equal to 11? True

>=,ge
7 >= 11
7 ge 11

Test: Is 7 greater than or equal to 11? False

Operator Defined Example

&&,and Associates two variables using AND if (($x && $y) == 5)...

8

||,or Associates two variables using OR if (($x || $y) == 5)...

Please note that you must use each different operator depending on whether or not you are
comparing strings or numbers. In the table above, the black operators are for numbers and the
red ones are for strings. The “greater” and “smaller than” operators refer to the position of the
string in the alphabet.

4.2 For loop statement

In order to run a block of code iteratively, you use Perl`s for statement. It is useful for
running a piece of code in a specific number of times. The following illustrates Perl for
statement syntax:

for(initialization; test; increment){

 statements;

}

There are three elements in the for statement - initialization, test and increment - are
separated by semicolons. Perl does the following sequential actions:

 Step 1. The initialization: “initialization” expression is evaluated- you can initialize a
counter variable here.

 Step 2. The test expression is evaluated. If it is true, the block “statements” will be
executed.

 Step 3. After the block was executed, the increment is performed and test is evaluated
again. The process goes to step 2 until the test expression is false.
If the test is never false, you encounter with an indefinite loop.

Here is a code snippet to print a message 10 times.

for($counter = 1; $counter <= 10; $counter++){

 print "for loop #$counter\n";

}

First the $counter is initialized. Next Perl checks if $counter is less than or equals ten
or not. In this case, $counter is 1 so Perl executes the code inside block and increase the
$counter by 1. The process takes place until the $counter variable is equal to ten,
therefor the code block was executed 10 times.

9

5 Useful Functions/ Commands

5.1 Print Function

The print function prints string literals on standard-out by placing them directly following the
print keyword, as follows:

print "Hello World!\n Welcome";

stdout:

Hello World
Welcome

Variables can be included in the output by placing them directly after the print statement or
within double-quoted strings. (Variables within single-quoted strings will not be replaced.)
The following example declares one variable called $age with a numeric value, another
called message with a string value, then prints them:

Example1:

my $age = 22;
my $message = 'How old are you?';
print "Hi. I am $age. $message";

stdout:

Hi. I am 22. How old are you?

Example2:

my $message =’I am 22. How old are you?';
print $message

stdout:

I am 22. How old are you?

Example3:

my $message =’How old are you?';
print ”I am 22.”,$message

stdout:

I am 22. How old are you?

Whole lists/arrays can be included like in the following examples:

Example1:

my @int=(1,3,4,5)
print "That are the numbers\n:@int 6";

stdout:

10

That are the numbers:
1 3 4 5 6

Example2:

my @int=(1,3,4,5)
print "That are the numbers:\n”,@int,”6”;

stdout:

That are the numbers:
1 3 4 5 6

5.2 System Function

Both Perl's exec() function and system() function execute a system shell command.

exec(PROGRAM);

my $result = system(“PROGRAM”);

The big difference is that system() creates a fork process and waits to see if the command
succeeds or fails - returning a value. exec() does not return anything, it simply executes
the command.

Example1:
my $result =system(“echo hallo”);

stdout:

hallo

Example2:
my $result =system(“echo $ARGV[0]”); # call: perl perlscript hallo2

stdout:

hallo2

If system returns a value of -1, it indicates a failure to start the program or an error of the
system call. If the system's failure, you can check like this:

my $result =system(“echo $ARGV[0]”) ==0 or die "system @args failed: $?";

11

6 Examples

6.1 Script 1

#!/usr/bin/perl
use strict;
use warnings;
my $scalar1=1;
my $scalar2='The list contains the numbers';
my @list1=(1,3,5,2);
print "$scalar2 : @list1\n";
print "This is the list without the first argument with the
number $scalar1:\n $list1[1] $list1[2] $list1[3]\n"

output:

The list contains the numbers : 1 3 5 2
This is the list without the first argument with the number 1:
 3 5 2

6.2 Script 2

#!/usr/bin/perl
use strict;
use warnings;
my $scalar1=1;
my $scalar2='The list contains the numbers';
my @list1=(1,3,5,2);
my $program_value1;
my $program_value2;
$program_value1=system("echo $scalar2 : @list1\n");
$program_value2=system("echo This is the list without the
 first argument with the number $scalar1:
 $list1[1] $list1[2] $list1[3]");

output:

The list contains the numbers : 1 3 5 2
This is the list without
 the first argument with the number 1: 3 5 2

12

6.3 Script 3

#!/usr/bin/perl
use strict;
use warnings;
my $scalar1=1;
my @list1=(1,3,5,2);
my $program_value1;
for(my $i=0; $i<=3; $i++)
{
 my $j=$i+1;
 $program_value1=system("echo the $j. number of the list is
 : $list1[$i]");
}

output:

the 1. number of the list is : 1
the 2. number of the list is : 3
the 3. number of the list is : 5
the 4. number of the list is : 2

13

6.4 Script 4

#!/usr/bin/perl
use strict;
use warnings;
my $scalar1=1;
my $scalar2='number of the list is:';
my @list1=(1,3,5,2);
my @list2=(11, 15, 21, 86);
my $program_value1;
my $program_value2;
if ($ARGV[0]==1)
 {
 for(my $i=0; $i<=3; $i++)
 {
 my $j=$i+1;
 $program_value1=system("echo the $j.$scalar2
 $list1[$i]");
 }
 }
elsif ($ARGV[0]==2)
 {
 for(my $f=0; $f<=3; $f++)
 {
 my $j2=$f+1;
 $program_value2=system("echo the $j2.$scalar2
 $list2[$f]");
 }
 }

output:

the 1. number of the list is : 11
the 2. number of the list is : 15
the 3. number of the list is : 21
the 4. number of the list is : 86

7. References

http://www.perltutorial.org
http://www.developer.com/lang/perl/article.php/1478301/Perl-Strict-Warnings-and-Taint.htm
http://www.expertwebinstalls.com/cgi_tutorial/basic_perl_syntax_guide_variables.html
http://www.tizag.com/perlT/perloperators.php)
http://www.ehow.com/how_2095001_use-print-function-perl.html
http://perl.about.com/od/programmingperl/qt/perlexecsystem.htm

