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Abstract: This contribution generalizes the statistical tools for the evaluation of carbon labeling experiments that
have been developed for the case of positional enrichment systems in Part II of this series to the general case of
isotopomer systems. For this purpose a new generalized measurement equation is introduced that can describe all
kinds of measured data like positional enrichments, relative 13C NMR multiplet intensities or mass isotopomer
fractions produced with MS instruments. Then, to facilitate the specification of the various measurement proce-
dures available, a new flexible textual notation is introduced from which the complicated generalized measurement
equations are automatically generated. Based on these measurement equations, a statistically optimal flux estima-
tor is established and parameter covariance matrices for the flux estimation are computed. Having implemented
these tools different kinds of labeling experiments can be compared by using statistical quality measures. A gen-
eral framework for the optimal design of carbon labeling experiments is established on the basis of this method.
As an example it is applied to the Corynebacterium network from Part II extended by various NMR and MS mea-
surements. In particular, the positional enrichment, multiplet or mass isotopomer measurements with the greatest
information content for flux estimation are computed (measurement design) and various differently labeled input
substrates are compared with respect to flux estimation (input design). It is discussed in detail how the mea-
surement procedure influences the estimation quality of specific fluxes like the pentose phosphate pathway influx.

Keywords: metabolic flux analysis, isotopomer measurements, cumomers, optimal experimental design
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1 Introduction

In Part III of this series (Wiechert et al., 1999) (henceforth simply called Part III) the model for positional carbon
labeling systems developed in Part I (Wiechert & de Graaf, 1997) was extended to general isotopomer labeling
systems. For this purpose the concepts of cumomers, cumomer fractions and cumomer networks were introduced
which turned out to be a very elegant tool to describe and analyze isotopomer labeling experiments. Part IV now
deals with the extension of the statistical methods developed in Part II (Wiechert et al., 1997a) to isotopomers. The
main goal of this contribution is a detailed quantitative comparison of various experimental labeling techniques
with respect to the achievable flux information. This problem of optimal experimental design has been under
discussion in recent years but has never been precisely answered on objective criteria.

1.1 Isotopomer measurements

In principle isotopomer fractions (or more precisely certain linear combinations of them) can be measured with
two techniques: nuclear magnetic resonance (NMR) and mass spectrometry (MS). The different measurement
techniques are now characterized in more detail with respect to the formulation of the measurement equations that
will be introduced below. In particular, emphasis is laid on the statistical quality of each data source:

1. The 1-dimensional 1H-NMR measurement of positional 13C enrichment (PE) was extensively discussed
in Parts I and II (see also (Marx et al., 1996)). This method requires purified substances because it is
difficult to disentangle the large number of peaks arising for a substance mixture. On the other hand, this
method produces the highest accuracy achievable with NMR. The reason is that 1H-NMR has a much higher
sensitivity than 13C-NMR and that this technique requires no additional calibration measurements because
both 13C- and 12C-bounded protons are distinguishable in one and the same spectrum (Figure 1a). Thus the
peak areas corresponding to different carbon isotopes can be directly normalized to the PE scale.

2. The quantification of isotopomers by 1-dimensional 13C-NMR relies on the presence of multiplet peaks
(MP) - i.e. doublets, triplets or doublets of doublets - in the 13C-spectrum caused by two or more neighboring
labeled carbon atoms. Figure 1b shows some typical MP spectra of alanine, which is a measurable metabolic
successor of pyruvate. The precise correspondence between the isotopomers and the MP peaks they produce
can be derived once the coupling constants between all neighboring carbon atoms are known.

Unfortunately, several different isotopomers may produce identical multiplets. For example (see Figure
1b) the alanine isotopomers Ala#000, Ala#100, Ala#001 and Ala#101 cannot be distinguished in a mix-
ture. Generally, the available measurements can only be used to distinguish certain groups of isotopomers.
Moreover, 12C carbons cannot be detected by 13C-NMR so that the total amount of carbon atoms remains
unknown unless further independent measurements are carried out. Consequently, a normalization of peak
areas to a percentage scale involves considerable time and effort and for that reason ratios of peak areas
are usually used for data evaluation (Jeffrey et al., 1991; Künnecke et al., 1993; Szyperski, 1995). Only
if additional 1H-NMR measurements are performed can the complete isotopomer distribution be quanti-
fied (de Graaf et al., 1996). Finally, 13C-NMR is rather insensitive so that it takes a comparatively long
measurement time to produce high-resolution spectra with adequate signal to noise ratios.

3. The 2-dimensional 1H-13C-NMR (2D-NMR) technique essentially allows the 13C quantification of iso-
topomers to be performed with the sensitivity of 1H-NMR. The 13C multiplet resonances thus emerge in
a 2-dimensional coordinate system dispersed according to the chemical shift of the bonded protons. The
advantage of this method is that peak overlaps are almost completely eliminated in two dimensions so that
a mixture of many compounds can be analyzed in a single experiment (Szyperski, 1995). This represents
considerable progress because there is no need for separation of amino acids as in (Marx et al., 1996). The
only drawback is that the resolution in the 13C dimension is somewhat limited.

4. Finally, some isotopomer measurements can be obtained with mass spectrometry (MS) (Inbar & Lapidot,
1987; Donato et al., 1993; Christensen & Nielsen, 1999), which is usually combined with gas chromatogra-
phy as GC-MS or liquid chromatography as LC-MS (Figure 1c). This also enables mixtures to be analyzed
without prior separation of the components. MS can only separate isotopomers with different molecular
mass (so-called mass isotopomers (Lee et al., 1991)). Thus a metabolite with n carbon atoms essentially
enables n + 1 mass isotopomers (MI) to be measured. Moreover, also the isotopomers of compound frag-
ments produced by thermal cleavage in the MS instrument can be detected. This considerably increases the
amount of measured data. A signal normalization to a percentage scale is necessary if not all MS peaks
corresponding to one compound are quantified (Lee, 1993). In principle, the sensitivity and precision of MS
is unrivaled offering a chance to directly measure various intracellular compounds that have been hitherto
inaccessible (Christensen & Nielsen, 1999).

However, care must be taken in the evaluation of MI spectra. Firstly, the naturally stable isotopes of O, H, N,
S, P also contribute to the MI signals thus significantly biasing the measured peak areas. However, this effect
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can be corrected after the measurement (Lee et al., 1991; Lee et al., 1992) and thus will be ignored later on.
Secondly, the biological experiment is never stationary with such a high precision and certain corrections
like the washout correction in (Marx et al., 1996; Wiechert, 1996) have to be considered. Summarizing, a
MS signal must never be assumed to be as precise as the instrument alone because the whole sampling and
measurement process must be considered.

As will be shown in Section ”Isotopomer Measurements”, all these measurement procedures yield – up to nor-
malization to a percentage scale – certain linear combinations of isotopomer fractions. In the following the term
isotopomer measurement is used for such a measurable linear combination. The combination of PE, MP and MI
data sometimes enables all isotopomer fractions of a certain metabolite to be quantified. The principal compu-
tational details of this measurement disentangling process have already been sketched in (Wiechert & de Graaf,
1996).

1.2 Types of labeling experiments

Carbon labeling experiments are still expensive with respect to manpower and material. Consequently, it is impor-
tant to get maximum information about the unknown intracellular fluxes with minimal effort. Apart from choosing
one of the newly developed measurement techniques described above the experimenter can compose the input
substrate to achieve optimal results. In particular isotopomers can be drawn quite freely from the following four
sources:

Unlabeled substrates (up to natural 13C abundance) are always cheaply available as a mixture component.

Specifically labeled substrates are 13C labeled at a single specified carbon position. For example [1- 13C]-glucose
(henceforth abbreviated as 1- glucose) has been successfully used in Part II.

Multiply specifically labeled substrates like [5,6-13C2]-glucose (henceforth abbreviated as 5,6-glucose) are rather
expensive and the extent to which the use of such substrates can help to increase the flux information remains
an open question.

Uniformly labeled substrates , i.e. compounds labeled at each carbon atom position are available at a price com-
parable to singly labeled substrates. For example [1,2,3,4,5,6- 13C6]-glucose (henceforth denoted as U-
glucose) has been successfully used in (Szyperski, 1995; Sauer et al., 1997).

Clearly, a purely unlabeled as well as a purely uniformly labeled substrate will yield no flux information at all.
Thus they must always be mixed with another species. In (Szyperski, 1995) and (Schmidt et al., 1998a) different
mixtures of uniformly labeled, unlabeled and 1-labeled glucose have been used with good results. In general, mix-
tures of input isotopomers are promising candidates to obtain statistically well determined flux estimates (Schmidt
et al., 1998b). However, no quantitative results are currently available to decide which mixture is best for a certain
experiment. This question is treated in detail in this contribution.

1.3 Statistical analysis

As in the case of positional carbon labeling, flux estimation from isotopomer measurements is best performed by
using a least squares minimization approach (cf. Part II). This method is able to simultaneously exploit all the
available measurement data and thus yields a maximum of statistical information. However, to achieve optimal
results the statistical properties of the measurements have to be properly modeled. Apart from some application-
specific examples (Sauer et al., 1997) based on uniformly labeled input substrates the least squares method was
first applied in full generality in (Schmidt et al., 1998b). However, the problem of ill-conditionedness in the case
of large exchange fluxes (see Part II) could not be generally solved in (Schmidt et al., 1997).

A general tool for the statistical analysis of isotopomer labeling experiments based on analytical derivatives like
that established in Part II for positional carbon labeling systems is not yet available. Statistical analysis has only
been applied in some specific cases (Lee, 1993). To achieve reliable results a powerful mathematical formalism
is required to express the variety of NMR and MS isotopomer measurements available. This generalization of the
measurement matrices from Part II was first sketched in (Wiechert & de Graaf, 1996; Wiechert, 1996) but without
the necessary normalization operation that was later described by (Schmidt et al., 1998b). However, it will be
shown in Appendix A that the statistical properties of the measurements were suboptimally exploited in the latter
approach.

The most important statistical quality measure that is computed in a regression analysis is the covariance matrix
of the estimated parameters. Based on this matrix, confidence regions can be computed and possibly occurring
linear dependencies between the estimated parameters can be analyzed (see Part II). In combination with the
parameter sensitivity matrix the causes of linear dependencies can then be investigated in more detail (Chatterjee
& Hadi, 1988). The first rough estimate of this matrix was achieved by (Schmidt et al., 1998a) by using a Monte
Carlo approach. However this approach is computationally much too expensive to be used as a general procedure
in optimal experimental design where covariance matrices have to be repeatedly computed.
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1.4 Optimal experimental design

As has become clear so far, there is now a large variety of possible measurement techniques for carbon labeling
experiments. The right choice of the experimental conditions depends on the flux information that is achieved and
also on the the cost of the experiment. Currently, no systematic methods based on quantitative criteria are available
to compare the different experimental approaches for flux determination.

Clearly, such a criterion should in some way be derived from the ellipsoidal confidence region that can be
computed from the parameter covariance matrix for a single experiment. This parameter confidence region depends
on the following experimental conditions that can be influenced by the experimenter:

Measured pools, i.e. the set of all metabolites extracted from cell mass.

Measured data, i.e. positional enrichments (PEs), multiplets (MPs) or mass isotopomers (MIs).

Input substrate, i.e. the composition of the substrate pool from a given set of available isotopomers (unlabeled,
singly, multiply or uniformly labeled).

In the theory of optimal experimental design (Pázman, 1986), various methods have been developed to compare
the information yield of different experiments. To this end several scalar criteria (like the A-, D-, E-, or G-
criterion) have been derived to compare the shapes of the respective confidence regions in the parameter space.
The D-criterion has become the most popular in the past decade (Munack, 1989; Takors et al., 1997). It essentially
measures the volume of the confidence ellipsoid and is closely related to the well-known Fisher information. For
this reason it is the most natural criterion because it does not only consider the single parameter confidence intervals
but also the correlations among the parameters which may lead to a needle-shaped confidence ellipsoid.

A disadvantage of a scalar criterion is that all aspects of estimation precision are condensed into one single
number. If the user is interested only in certain parameters the criterion should be modified. For example, the
experimenter might be interested in one single flux (e.g. the pentose phosphate pathway influx), in a subset of all
fluxes (e.g. all anaplerotic fluxes or all net fluxes) or in a flux that is linearly dependent on the free fluxes. To meet
these requirements the D-criterion can be restricted to a set of linear combinations of the free fluxes as defined by
a matrix L which leads to the DL- criterion (Pázman, 1986).

A well-known conceptual problem for nonlinear optimal experimental design is the dependency of the param-
eter covariance matrix on the true values of the unknown parameters. This means that an experiment has actually
to be performed in order to compute the quality criterion. At first glance this would mean that experimental design
methods are useless for flux determination. As far as the choice of measurements is concerned the problem of a
priori flux knowledge is not that critical because the quality of the flux estimate can always be refined a posteriori
by making additional measurements. This leads to an iterative design procedure similar to that described in (Takors
et al., 1997). On the other hand, there is no chance of correcting a wrong input substrate mixture a posteriori with-
out a complete repetition of the experiment. The usual way to escape this vicious circle is to assume a value for
the unknown flux parameters a priori and to rely on the assumption that the comparison of two experiments by the
scalar criterion is rather insensitive with respect to the assumed flux values. As will be shown below this robustness
assumption can be easily tested by performing parameter variation studies.

1.5 Aims of this contribution

The following aims of the present contribution are derived from the preceding discussion:

1. Establishment of general measurement equations that can describe all types of available measurements in-
cluding their normalization to a percentage scale and introduction of a flexible textual notation to facilitate
the specification of all different measurement combinations.

2. Generalization of the statistical model from Part II to isotopomer experiments based on the preparatory work
from Part III and extension to general isotopomer experiments of the software tools already available for the
automatic generation of model equations.

3. Implementation of an algorithm for flux estimation and computation of parameter covariance matrices based
on the analytically computed gradients from Part III thus minimizing the computational effort.

4. Application of statistical methods from regression theory to achieve a quantitative judgement of the achiev-
able flux information by the different types of labeling experiments and measurements; establishment of
some general theorems and procedures for optimal experimental design of labeling experiments.

5. Demonstration of all the developed methods by a complex example (i.e. the central metabolism of Corynebac-
terium glutamicum). In particular the influence of the measurement procedure on the quality of the pentose
phosphate pathway influx estimate is discussed.

In summary, the different methods that are currently propagated for metabolic flux analysis will be quantita-
tively compared thus establishing a rational platform for the optimal experimental design of labeling experiments.
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2 Isotopomer Measurements

With the concepts presented in Part III all components of the general statistical model presented in Part II can now
be generalized to isotopomer systems. The most important difference between positional and isotopomer labeling
systems is that the state vector x formerly composed of all positional enrichments is now extended to all cumomer
fractions. The positional enrichments can be easily recovered as the 1-cumomer subvector 1x of x. Moreover,
there is a simple linear transformationT between isotopomer and cumomer fractions. In Part III it has been shown
how the cumomer fractions can be computed as a function � of the forward and backward fluxes in the system.

The new measurement equations for isotopomer systems must now link the isotopomer measurement data
vector y with the new labeling state vector x. At the same time, the normalization operation for peak areas must
be included appropriately in the model. This is the aim of the current section.

2.1 Generalized measurement matrices

In order to model the relation between the labeling state vector x and the measurement data vector y the concept
of measurement matrices as introduced in Part II has to be extended in such a way that PE, MP and MI data sets
can be represented by using the same formalism. Two steps have to be taken in that direction:

1. Measurement matrices are now allowed to be general matrices where the rows are no longer required to be
unit vectors (as was the case in Part II).

2. In general MP and MI fractions corresponding to one compound are only measured up to a scaling factor.
This must be accounted for by introducing scaling parameters which will lead to a bilinear structure of the
measurement equations.

One measurement equation has to be written for each group of measurement data with a common scaling
factor. For example, all MP areas corresponding to one carbon atom position are scaled by the same factor. Thus
in general the measurement equation for the kth group of measurements has the form

yk = !k �M0y;k � x+ "y;k (1)

with the labeling state vector x, the measurement data vector yk for the kth group, a certain measurement matrix
M0y;k, an (unknown) scaling parameter !k, and the measurement errors "y;k. The 0-decoration of the matrix M
is used because this is a preliminary definition of the measurement matrix that will be modified later on. Some
examples of the matrix structures that can arise for common experimental methods are now given.

2.2 Examples of measurement matrix composition

To illustrate the composition of the measurement matrices consider an alanine molecule Ala with its 3 carbon
atoms. Assume for the moment that Ala is the only metabolite in the system, so that the labeling state vector is
given by the cumomer fraction vector (written in binary and positional notation) as

x = (alaxxx; alaxx1; alax1x; alax11; ala1xx; ala1x1; ala11x; ala111)
T

= (ala; ala3; ala2; ala23; ala1; ala13; ala12; ala123)
T

or alternatively by the isotopomer fraction vector

x = (ala000; ala001; ala010; ala011; ala100; ala101; ala110; ala111)
T

:

Using the isotopomer-cumomer transformation matrix T 3 presented in Part III these vectors are linked by x =

T3 � x. Now the three different types of isotopomer measurements are treated:

1. Looking more thoroughly at the origin of PE data than in Part II it should be recognized that each PE
measurement is actually composed of the area of the corresponding 12C- and 13C-related resonance peaks in
the 1H-NMR spectrum (Figure 1a). As an example, the second carbon atom position of alanine is considered.
Then the quantities ala2 and 1 � ala2 = alaxxx � alax1x are both measured up to a scaling factor !AlaH2.
This leads to the first measurement matrix

M0AlaH2 =

�
: : 1 : : : : :

1 : �1 : : : : :

�
(2)

where dots represent zero entries. Alternatively, the measurements can be written with isotopomer fractions
�x by using the transformed matrix:

M
0

AlaH2 =M
0

AlaH2 �T3 =

�
: : 1 1 : : 1 1

1 1 : : 1 1 : :

�

Likewise, the matrixM
0

AlaH3 is composed with the corresponding scaling parameter !AlaH3.
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2. Assume now that MPs can be measured by 13C-NMR as shown in Figure 1b. Consider for example the
singlet, doublet A, doublet B and doublet of doublets signal of the second carbon atom. The corresponding
measurement matrix can be most easily formulated by using the isotopomer fraction coordinates:

M
0

AlaC2 =

0
BB@

: : 1 : : : : :

: : : : : : 1 :

: : : 1 : : : :

: : : : : : : 1

1
CCA

From this it is immediately obtained:

M0AlaC2 =M
0

AlaC2 �T
�1
3 =

0
BB@

: : 1 �1 : : �1 1

: : : : : : 1 �1
: : : 1 : : : �1
: : : : : : : 1

1
CCA (3)

Likewise the measurement matrix M0AlaC3 is obtained. It has two rows because only one singlet and one
doublet occur (see Figure 1b). The corresponding scaling parameters are ! AlaC2; !AlaC3.

3. At last, the mass spectrometric measurement is described (Figure 1c). After the natural isotope correction
(Lee et al., 1992) there remain four MI peaks corresponding to the molecules of Ala that are 0, 1, 2, or 3
times 13C labeled. This immediately yields the measurement matrix

M
0

AlaM =

0
BB@

1 : : : : : : :

: 1 1 : 1 : : :

: : : 1 : 1 1 :

: : : : : : : 1

1
CCA (4)

with respect to isotopomer fractions and the matrix

M0AlaM =M
0

AlaM �T�13 (5)

with respect to cumomer fractions together with a scaling factor !AlaM.

Finally, it is assumed that the 2,3-fragment of alanine is also measured. The corresponding measurement
matrix then is:

M
0

Ala23M =

0
@ 1 : : : 1 : : :

: 1 1 : : 1 1 :

: : : 1 : : : 1

1
A (6)

2.3 General structure of measurement equations

If all the measurements described above are available, the Equations (2,3,5,6) given as examples yield the overall
measurement equation (compare to Equation 1):0

BBBBB@

yAlaH2

yAlaH3

yAlaC2
...
yAla23M

1
CCCCCA =

0
BBBBB@

!AlaH2 �M0AlaH2
!AlaH3 �M0AlaH3
!AlaC2 �M0AlaC2
...
!Ala23M�M0Ala23M

1
CCCCCA � x+

0
BBBBB@

"AlaH2

"AlaH3

"AlaC2
...
"Ala23M

1
CCCCCA

Remember that this equation was built upon the simplifying assumption that alanine is the only metabolite in
the system. In general the vector x has also entries x i for all cumomers of metabolites other than alanine so that
the dimension of the preliminary measurement matrices given above doesn’t match the dimension of x.

Assume, for example, that Ser and Asp are also present in the system and that additional measurement matrices
M0SerC2;M

0

SerC3 andM0AspM have been constructed as described above. Then the cumomer fractions are

x = (serxxx; : : : ; ser111; alaxxx; : : : ; ala111; aspxxx; : : : ; asp111)
T

and the general structure of the measurement equation is given by0
BBBBBBB@

ySerC2

ySerC3

yAlaH2
...
yAla23M

yAspM

1
CCCCCCCA

| {z }
y

=

0
BBBBBBB@

!SerC2�M0SerC2 0 0

!SerC3�M0SerC3 0 0

0 !AlaH2 �M0AlaH2 0
...

...
...

0 !Ala23M�M0Ala23M 0

0 0 !AspM�M0AspM

1
CCCCCCCA

| {z }
My (!)

�x+

0
BBBBBBB@

"SerC2

"SerC3

"AlaH2
...
"Ala23M

"AspM

1
CCCCCCCA

| {z }
"y

(7)
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where 0 denotes zero matrices (of varying dimensions) and

! = (!SerC2; !SerC3; !AlaH2; : : : ; !Ala23M; !AspM)
T

is the vector of all scaling factors. Now the final measurement matrices

My;i; i = SerC2; SerC32;AlaH2; :::;AspM

are defined as

MSerC2 =

0
BBBBB@

M
0

SerC2 0 0

0 0 0

0 0 0

...
0 0 0

1
CCCCCA

; MSerC3 =

0
BBBBB@

0 0 0

M
0

SerC3 0 0

0 0 0

...
0 0 0

1
CCCCCA

; MAlaH2 =

0
BBBBBBB@

0 0 0

0 0 0

0 M
0

AlaH2 0

0 0 0

...
0 0 0

1
CCCCCCCA

; : : :

Here the 0-matrices are sized as in Equation (7) so that all My;i have the same dimensions. The measurement
Equation (7) can then be concisely written in the form

y =My (!) � x+ "y =

 
pX

i=1

!i �My;i

!
� x+ "y (8)

where p is the number of data groups resulting from the application of the different measurement techniques to the
different compounds in the system.

2.4 A flexible notation for isotopomer measurements

The general measurement Equation (8) contains many high-dimensional but sparsely populated generalized mea-
surement matrices My;i. From the user’s viewpoint, matrix input into a software system is always tedious work
and a primary source of errors. For this reason an intuitive and easy to handle textual notation for the various types
of measurements will be presented from which the measurement matricesMy;i are automatically generated. This
strategy has already been used for the generation of the carbon balance equations in Part I.

Generally, to specify a measurement equation together with the corresponding measured data the user has to
supply a measurement name, a specification of the measured quantity and a measured value with standard devia-
tion. Then all measurement values associated with the same scaling factor have to be put into one measurement
group. For example to generateMAlaC2 it can be specified:

GROUP Ala C2 :=
f

Ala Sing 2 := Ala#010= 0.157 +- 0.005
Ala DoubA 2 := Ala#110= 0.285 +- 0.005
Ala DoubB 2 := Ala#011= 0.122 +- 0.005
Ala DDoub 2 := Ala#111= 0.053 +- 0.005

g

The measurement value is given without scaling, i.e. in the case of MPs the peak areas are directly supplied. The
measurement specification on the right side of each equation can be written by using one of the following notations:

1. The combined binary isotopomer/cumomer notation (e.g. Ala#0X1) allows each of the letters 0, 1 or X to
be used with the meaning introduced in Part III. This combines the binary isotopomer notation (where only
the symbols 0, 1 are allowed) and the binary cumomer notation (where only the symbols X, 1 are allowed).

2. The positional cumomer notation (e.g. Ala#13) can be used alternatively, which keeps the notation consistent
with the PE notation in Part II.

3. The fragment weight notation (e.g. Ala#23(2)) is used to specify MS measurements. It is composed of
the observed fragment given by the respective carbon atom positions 23 of the original molecule and the
bracketed number (2) of the measured MI peak starting with zero for the lightest fraction.

Additionally, any linear combination of such terms can be specified giving the user full flexibility to express
arbitrary measurement configurations. For example, the opposite carbon atoms numbered 5 and 9 in the benzene
ring of phenylalanine cannot be disentangled by NMR, which is expressed (in the case of 1H-NMR) by the PE sum

Phe H2 := Phe#5+Phe#9 .

Obviously, this notation enables all the measurement types to be expressed in a very comprehensive way and in
most cases only one term has to be written. Thus the risk of an erroneous input is rather small.
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3 Statistical Evaluation and Experimental Design

As becomes evident from the previous section, an important structural difference between the statistical models
in Parts II and IV is that another set of parameters had to be introduced by the vector of scaling factors ! in
the measurement equations. This causes another model nonlinearity. The optimal estimation of the additional
parameters is discussed in Appendix A. It is shown there that the approach of (Schmidt et al., 1998a) which treats
the additional parameters separately from the flux parameters leads to suboptimal results and can be improved
by estimating all parameters simultaneously from one least squares minimization. As will be shown below the
general treatment of these additional parameters is straightforward within the general framework. All the necessary
software tools for model generation, equation solving, flux fitting and statistical analysis described below have been
implemented by the authors so that the framework can be immediately put to work.

3.1 The general statistical model

All computational steps of the model from Part II can now be reestablished starting with the free flux vector �.
The following mappings were introduced in Parts I-III:

	 computes the numerical flux coordinates vnet
;vxch[0,1] from the free fluxes �

�[0,1] transforms vnet
;vxch[0,1] to the application flux coordinates vnet

;vxch

� transforms vnet
;vxch to the natural flux coordinates v!;v 

� computes the cumomer labeling state vector x from v!;v 

Mw relates the measured net fluxesw to v!;v 

My (!) relates the isotopomer measurements y to x

Compared to the model from Part II, only the structure of the mapping � and that of the measurement matrix
My (!) has to be changed in this sequence. Consequently, the complete input-output relation from Part II has now
been reestablished (Æ denotes the concatenation of maps):�

w

y

�
=

�
(Mw;�Mw)� � Æ�[0,1]Æ	(�)

My (!) �� Æ� Æ�[0,1]Æ	(�)

�
+

�
"w

"y

�
def
=

�
Fw (�)

Fy (�; !)

�
+

�
"w

"y

�
(9)

This is the general statistical regression model for isotopomer labeling experiments. Having computed a flux
estimate �̂ and a scaling factor estimate !̂ by solving the weighted least squares problem

min
�;!

jjFw (�)�wjj2�w + jjFy (�; !)� yjj2�y (10)

the combined covariance matrix of the free fluxes and the scaling factors can be estimated by

Cov (�̂; !̂)�1 =

0
@ @Fw

@�
0

@Fy
@�

@Fy
@!

1
A

T

�
�
��1w 0

0 ��1y

�
�

0
@ @Fw

@�
0

@Fy
@�

@Fy
@!

1
A : (11)

It is shown in Appendix B how the derivatives @Fy=@� and @Fy=@! can be computed analytically by using matrix
calculus. Usually the auxiliary parameters ! will be of no interest in practical application. For this reason the
desired covariance matrix Cov (�̂) can be immediately obtained by taking the upper left submatrix of Cov ( �̂; !̂)

with dimension dim �� dim �.
Once the covariance matrix has been computed all the statistical procedures introduced in Part II, like the

computation of single parameter and simultaneous confidence regions, can be carried out. This has been done
recently for several different isotopomer experiments and will be presented elsewhere (Petersen et al., 1998). The
following chapters concentrate on the optimal design of labeling experiments.

3.2 Optimal experimental design

As has been explained in the Introduction, the covariance matrix Cov ( �̂) depends on some parameters that can be
influenced by the experimenter:

1. the isotopomer mixture composing the input substrate as specified by x inp,

2. the type and amount of measurements as specified byMy.

Clearly, these parameters cannot be arbitrarily chosen, because there are various constraints set by the experimental
facilities and the commercial availability of isotopomers. The realizable measurement matrices and mixtures are
henceforth called feasible design parameters.

In order to compare two or more designs the D-optimality criterion is used in this text as explained in the
Introduction. However, other criteria (Pázman, 1986) can be directly built into this framework because none of the
computational procedures specifically depends on the structure of the D-criterion.
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Choosing the D-criterion means that the squared volumes of the confidence ellipsoids for a given significance
level are compared between two experimental designs. This squared volume is given (up to a constant that does
not depend on the design parameters) by

D (xinp
;My; �) = detCov (xinp

;My; �) :

This D-optimality criterion has to be minimized with respect to the space of all feasible input mixtures x inp and
measurement matricesMy:

Dopt (�) = min
xinp;My feasible

D (xinp
;My;�)

Obviously, Dopt depends on the true value of �. Thus an approximate value for the parameter vector � has
to be assumed a priori. In the following it will be shown that this procedure is well-justified because the optimal
design is rather insensitive with respect to even large variations in �.

As an extension to D-optimality, a restriction to a set of linear combinations of the free fluxes can be made by
minimizing the more general DL-criterion

DL = detCov (L ��) = L � Cov (�) � LT (12)

with an appropriate matrix L. This is called a partial optimal design (Pázman, 1986). For example L might select
a certain free flux, a group of free fluxes or a flux that is linearly dependent on the free fluxes. More details on
the numerical computation of the D-criterion are given in Appendix B. The practical use of the optimal design
procedure will be illustrated below by an example.

4 An Example

All the concepts presented above are now put into practice by using the network of central metabolic pathways
of Corynebacterium glutamicum previously illustrated in Part II. This saves a lengthy specification of networks,
parameters and assumptions and only the new details need to be given here.

4.1 Metabolic network and free fluxes

The system contains a total of 23 free fluxes and 13 of these fluxes (i.e. the biomass effluxes) were directly mea-
sured. It is not surprising that the confidence intervals of the corresponding 13 estimated values are almost the
same as those of the corresponding measurements. Consequently, labeling data have almost no influence on the
estimation quality of these fluxes so that the biomass effluxes are not interesting for an experimental design study.
For this reason the following investigation concentrates on the remaining 3 essential net fluxes

pppnet
1 pentose phosphate pathway influx

lpnet
2 lysine production via the ddh pathway

gcnet glyoxylate shunt flux

and the 7 essential exchange fluxes

glyxch[0,1]
1 ; glyxch[0,1]

3 in the glycolytic pathway
pppxch[0,1]

2 ; pppxch[0,1]
3 ; pppxch[0,1]

4 in the pentose phosphate pathway
acxch[0,1]

1 in the anaplerotic section
cacxch[0,1]

4 in the citric acid cycle .

As in Part II the anaplerotic section is represented by only one flux between a lumped PEP- Pyr pool and a lumped
OAA-Mal pool. The reason is that without this assumption certain nonidentifiable fluxes would occur (see Part II
and (Wiechert, 1995)) which would make it difficult to compare the different approaches. The detailed treatment
of the anaplerotic flux identifiability problem is well within the scope of the methods presented here but will be
carried out in a later publication.

It is assumed that the free fluxes estimated in Part II (under lysine-producing conditions) are indeed the true
flux values. Starting with this assumption it will now be investigated which type of experiment would have been
best to estimate these fluxes. Particular interest is attached to the pentose phosphate pathway influx estimate ppp net

1

which was only determined within a 90% confidence interval of �12 (relative to the glucose uptake rate 100),
which may not be good enough to discriminate two different genetically engineered strains from each other.

In Part II it was not necessary to model the amino acid biosynthesis pathways in detail because each PE
measurement could be immediately related to a precursor carbon atom in central metabolism. This is no longer
true for MP and MI measurements because some amino acids (like phenylalanine, valine or leucine) are composed
of more than one precursor molecule. In this situation an MP or MI fraction cannot be directly traced back to the
single precursors. For this reason the amino acid synthesis pathways for serine, alanine, phenylalanine, valine,
leucine, isoleucine, proline, threonine and aspartate have been incorporated into the network.

8



4.2 Measurements

Three sources of isotopomer measurement data with typical measurement errors are now compared for the C. glu-
tamicum example. Some details on the origin of the assumed data sets are given now:

PE data set: The positional enrichments in Table 1 are assumed to be measured by 1H-NMR. They were taken
from Part II but here the various measurement errors are assigned to typical values rather than the specific
outcomes from Part II. However the standard deviations are always in the order of magnitude of those values
published in Part II. This results in a total of 26 PE values.

MP data set: The multiplet data set from Table 1 obtained by 2D-NMR is essentially taken from (Szyperski,
1995) but has been extended by some recently published data (Schmidt et al., 1998a; Petersen et al., 1998).
It should be noticed that some of the measurements (like those for Ri5p#1) can only be obtained from
RNA/DNA hydrolysate. However they have been included to obtain a fair comparison. The complete
set of all published MP signals contains many obvious redundancies, e.g. when the pyruvate successors
alanine, valine, leucine and isoleucine are all measured. These redundancies would also arise if positional
enrichments were considered. Because the basic attitude of the present investigation is to concentrate on
the essential information these redundant data sources are not taken into consideration. This results in 68
MP data values within 21 groups, i.e. the net number of possibly informative values after MP scaling is
68-21=47.

Unfortunately, no measurement standard deviations for multiplet peaks are given in the literature although
these parameters can be derived from the signal to noise ratio. These were therefore estimated from the
published spectra. If in doubt, a best case assumption for the MP measurements was made by assigning
rather optimistic values to the standard deviations. Overall, the values have error bars in the same order of
magnitude as those assumed for the PE peaks, which is also justified by the remarks made in the introduction.
The influence of these assumptions on the quality of the estimated fluxes will be investigated in detail in the
last Section before the Conclusion by performing a variation study.

MI data set: The most extensive mass isotopomer data set currently known to the authors is published in (Chris-
tensen & Nielsen, 1999) and has been kindly supplied by Bjarke Christensen from Lyngby, Denmark (Table
2). Knowledge of which molecular fragments can currently be observed by MS is taken from this source.
Again only those MI data values that are not obviously redundant are considered. This produces 90 MI data
values in 20 groups, i.e. the net number of possibly informative values is 70.

As explained in the Introduction MS is a virtually exact instrument. From some repeated runs in (Christensen
& Nielsen, 1999) it can be deduced that the measurement error of the MS instrument alone is about 0:2% on
the fractional enrichment scale. However due to the mentioned error sources (washout correction, sample
preparation, isotope effects) a larger error of 0:4% is assumed here for all MI values. This might be a rather
pessimistic assumption and the sensitivity of the flux estimation quality with respect to this assumption is
studied later in the last section before the Conclusion.

4.3 Interpretation of D-optimality criteria

A further remark should be made on the presentation of the results. If only a few experiments have to be compared
the standard deviations for all 10 essential flux estimates are presented by using bar charts. In the case of an
experimental design study with many different experiments this is not possible and the D-optimality values of
the respective designs are used. Usually these are very small numbers which are hard to interpret in an intuitive
manner. In the example discussed below the D-values have magnitudes in the order of 10 �120. Improvements in
the design can quickly change this value by a factor of 10 10, which is quite impressive at first glance but should be
interpreted in the right way.

In order to obtain an easier intuitive interpretation of these D-values the following transformations have been
made:

1. The focus is restricted to the essential flux estimates by inspecting the respective 10 � 10 submatrix of
Cov (�) in Equation (11). This results in a partial optimal design criterion DL where L is the projection to
the essential coordinates (see Equation (12)).

2. Imagine that the resulting 10-dimensional confidence ellipsoid is a sphere. Then the radius of this sphere is
given up to a constant factor by 20

p
D, i.e. the geometric mean of the principal axis length. This value can be

interpreted as an average confidence interval length over all estimated fluxes.

3. Finally, a reference experiment is defined which is the 1H-NMR experiment from Part II with 1-glucose as
input and the error bars from Table 1. Its partial D-optimality value is D ref = 1:5 � 10�24, i.e. the average
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axis length is 20
p
Dref = 0:06. All D-values are then related to this reference, i.e. the quality measures that

are finally used in Figure 4 and 6 are:

D =
20

p
D=Dref and I = 1=D :

As a numerical example the information value I = 1:5 means that the corresponding experiment will yield
an average 1:5-fold shrinking of the parameter confidence region compared to the reference experiment. Roughly
speaking the experiment is 1:5 times more informative than the reference. Clearly, the same effect is also produced
if only one axis shrinks by a factor of 1:520 = 3325, which can only be discovered by inspecting the respective
error bar plots.

4.4 Guiding problems

The following investigations were guided by some central questions:

1. Which of the three data sources gives the best results?

2. What is the optimal input substrate mixture in each case?

3. Which experiment yields the best estimation of the pentose phosphate pathway influx and of the split lysine
production pathway ratio?

5 Optimal Input for Positional Enrichment Measurements

The investigation is started with the comparison of experimental designs when only PE data are available, as was
the case in Part II. In this special situation some theoretical results can be proven that do not apply to the general
case.

5.1 A theoretical result

Clearly, in this situation only the PEs within an input mixture influence the outcome of the experiment. By denoting
with 1x

inp
the subvector of PEs in the input cumomer fraction vector x inp (see Part III) this means that

D (xinp
;MPE

y ; �) = D (
1xinp

;MPE
y ; �) :

An additional condition for the following Theorem is that each value of 1x
inp

is feasible, i.e. arbitrary fractions
0 � 1x

inp � 1 for all carbon atoms 1x
inp
i can be realized in practice. Under these conditions it has been proven in

(Kownatzki, 1998):

Theorem: For a fixed PE measurement matrixMPE
y it holds:

1. D (1x
inp
;MPE

y ; �) = D (1� 1x
inp
;MPE

y ; �) with the vector 1 composed from all ones.

2. D (� � 1xinp
;MPE

y ; �) increases monotonously with respect to � � 0.

3. D (� � 1;MPE
y ; �) =1 for 0 � � � 1.

These statements have a simple intuitive explanation:

1. If each 13C in the system is replaced by a 12C (i.e. 1x
inp

is replaced by 1 � 1x
inp

) then nothing changes
because 1H-NMR always measures both fractions. Both experiments are subsequently called mirror images
of each other.

2. It can easily be shown that the PE subvector 1x of x depends linearly on 1x
inp

. The more labeled material is
put into the system (i.e. � is raised) the higher is the intracellular positional labeling and thus all measurement
sensitivities are improved.

3. If all positions of the input substrate have the same PE � (i.e. 1x
inp

= � �1) then all intracellular carbon atom
pools will finally have the same PE � whatever the fluxes in the system are. Thus there is no flux information
in this experiment. This is e.g. the case with a mixture of unlabeled and uniformly labeled substrate as used
in (Szyperski, 1995).
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For an input substrate with only two carbon atoms the statements of this Theorem are illustrated in Figure 2a.
It becomes clear that in this special situation there are exactly two optimal experiments with the input PEs (1; 0) T

and (0; 1)T which are mirror images of each other. In higher dimensions the optimal solution is still restricted to a

small subset of the design cube 0 � 1x
inp � 1. More precisely it follows from the Theorem:

Corollary: For PE measurements it holds:

1. If 1x
inp

is optimal then one of its coordinate entries must be 1 and another must be 0.

2. Adding unlabeled or uniformly labeled isotopomers to any given input substrate mixture always decreases
the available flux information.

In three dimensions this restricts 1x
inp

to either (�; 0; 1)T , (0; �; 1)T or (0; 1; �)T with 0 � � � 1 or one of the
mirror images (Figure 2b).

5.2 Optimal input for unrestricted input substrate mixture

Although the Theorem does not completely solve the optimal design problem it suggests good starting points and
constraints in the search for the optimal solution by a nonlinear optimization algorithm. In particular the corners
of the higher dimensional design cube 0 � 1x

inp � 1 are good candidates. Removing the mirror images and the
informationless corners this means that 2n�1 � 1 D-values have to be computed where n is the number of carbon
atoms in the input. For a glucose input (n = 6) the results are shown in Figure 3. The computational effort to
produce this Figure is only in the order of a few minutes, which shows the efficiency of the numerical methods
presented in Part III.

By successively starting with each of the cube corners an optimization algorithm has a good chance of finding
a global optimum. Interestingly, for all examples where this was done it turned out that the optimal design was
actually one of the cube corners even when the starting value was randomly chosen (see also Figure 4). This
“corner rule” can serve as a rule of thumb for future computations.

Figure 3 shows that except for some very badly designed experiments the choice of the input substrate can
indeed improve the average confidence interval by a factor of 3. The best substrate turns out to be 2,3,5-glucose
(or its 1,4,6-labeled mirror image), which unfortunately is not available in practice like most other substrates with
higher molecular weights. This problem will be discussed in the next section. In general there is a rough correlation
between the improvement factor and the number of labeled carbon atoms as can also be seen in Figure 3.

The best singly labeled substrate is 2-glucose, which yields a 1:4 times improved result compared to the ref-
erence input 1-glucose. Even 3-glucose produces a 1:2-fold improvement. However, from a practical viewpoint
these improvements are not dramatic so that at least almost the best realizable experiment was carried out in Part
II.

The last entries in Figure 3 show that a total of 16 possible input substrates are completely ruled out because
some or all of the parameter standard deviations are tremendously large. They are all characterized by three labeled
(or unlabeled) carbon atoms at position 1,2,3. Because the 4,5,6-fragment passes unaltered through the whole
pentose sugar metabolism and the glycolysis as well it becomes clear why these substrates perform so badly.

5.3 Optimal feasible input

The investigation of the design cube corners is always a good starting point for an experimental design study
because it gives an impression of what can be achieved under the best possible conditions. However, in order to
compute a practically meaningful design the input vector 1x

inp
must be restricted to the set of feasible inputs. This

is given by mixtures of a limited number of available isotopomers. Unlabeled and uniformly labeled substrates
are always ruled out as mixture components by the Corollary. For this reason the mixture of 1-, 2- and 3-glucose
(which turned out to be the most informative singly labeled substrates) is now considered as an example.

A table of D-values for the set of all possible three component mixtures can be easily computed. The result is
graphically represented in Figure 4 by a mixture diagram. It turns out that the information optima are exactly all
three corners of the mixture triangle. A small local optimum can be found on the 1-glucose-3-glucose edge of the
mixture triangle. This is clear from the Theorem because 100% 1,3-glucose yields a 1:5-fold improvement. Like-
wise, the global minimum at the triangle center yields zero information because 1,2,3-glucose is uninformative.

As a result it can be concluded that the mixing of input substrates is not a good idea for PE experiments. On
the other hand, this shows that the investigation of all design cube corners as done before is a good starting point
to find the best practically realizable input substrate.

5.4 Robustness of the design

It has been pointed out before that nonlinear optimal experimental designs always depend on an a priori guess for
the true parameter �. The extent to which this guess influences the optimal solution has been investigated. To this
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end, all free fluxes were sequentially varied within�50% in each coordinate direction, which is quite a large range
and in practice will undoubtedly cover the true parameters. As a first result it turned out that the D-optimality
values indeed depend on the free fluxes. Quantitatively speaking the essential confidence intervals change their
size up to a factor of 3 when the free fluxes are varied (data not shown).

Fortunately the relative D-criteria remain approximately constant whatever the varied fluxes are. This means
that the ranking of the different experiments with respect to the achievable flux information always remains the
same except for minor position changes in the ranking that are not practically relevant. Thus it can be assumed
based on this empirical finding that optimal designs for labeling experiments are very robust with respect to the
parameter guess. This at last justifies the practical application of the experimental design method.

5.5 Partial optimal designs

Up to now only the D-criterion has been used as an average information measure over all the essential fluxes.
If a specific flux or a certain section of the metabolic network is of interest, the confidence intervals have to be
inspected in more detail. This is now done for the single parameter standard deviation of the pentose phosphate
pathway influx.

Figure 3 also shows the improvement of this specific error bar compared to the reference experiment. Although
there is a rough correlation between the overall performance and the ppp net

1 standard deviation it can be seen that
there is one outstanding experiment with 1,2,4-glucose yielding a 5:3-fold improvement. The best feasible exper-
iment with 2-glucose yields a 3:8-fold improvement. Thus the problem of an unsatisfactory pentose phosphate
pathway influx estimate would have been overcome with this substrate labeling.

Finally, Figure 5 shows a detailed comparison of standard deviations for some interesting PE experiments. It
becomes clear that certain substrates specifically enhance the estimation quality of certain fluxes. As soon as more
than one flux is required to be well estimated in addition to ppp net

1 the best design is almost exactly the same as the
best design for all essential fluxes. In particular this holds true if emphasis is laid only on the 3 net fluxes or on the
7 exchange fluxes in the system. This once more demonstrates that net flux estimation cannot be decoupled from
the estimation of exchange fluxes, although the latter are not of primary importance in flux analysis.

6 Optimal Input for General Isotopomer Measurements

In the case of general isotopomer experiments the restriction to a relatively low-dimensional design cube can no
longer be made. Thus an inspection of the input design space by computing a table of values is not practicable.
For this reason the inputs should be restricted to the set of feasible inputs by specifying input substrate mixture
components. The primary analysis of the PE experiment may help in the choice of the mixture candidates. In
the present example these candidates are the reference isotopomer 1-glucose, the unlabeled and the uniformly
labeled isotopomer. 1-glucose was chosen for a better comparison with the literature although the 2-glucose input
performed slightly better in the PE example. For example a 90:10 mixture of unlabeled and uniformly labeled
glucose was used for the MP measurements in (Szyperski, 1995) while a 90:10 mixture of 1-labeled and uniformly
labeled glucose was used in (Schmidt et al., 1998a). Such a mixture should also be a good substrate for mass
isotopomer measurements which require a sufficient amount of labeled carbon atoms to produce sensitive signals.

6.1 Comparison of measurement techniques

The D-criterion was computed for the MP and MI data set and for all mixtures of the three components (Figure
6). For the PE experiment it is already known by the Corollary that a pure 1-glucose input will perform best.
Inspecting the plots yields some interesting observations:

1. It is intuitively clear that MP measurements can identify the fluxes because this is already achieved with PE
measurements. On the other hand there is no intuitive feeling about the potential of MI data because MS is
not sensitive to specific carbon atom positions within the intracellular molecules. Figure 6b now proves that
MI measurements alone are sufficient to obtain a complete flux quantification.

2. The reference experiment can be improved with MP measurements as well as with MI measurements. How-
ever the best MP experiment (improvement factor 1.3) and the best MI experiment (improvement factor 1.6)
yield almost the same improvement as the 2-glucose PE experiment (factor 1.4). Thus there is no practically
relevant difference between all three experimental methods.

3. The best MP experiment (the 50:5:45 mixture of uniformly labeled, unlabeled and 1-labeled glucose) and
the best MI experiment (40:12:48) perform quite similarly which indicates that these two measurement
techniques can be well combined. On the other hand, the PE optimum is always on the edges of the triangles
(Figure 4). This indicates that the additional incorporation of PE data into an MP or MI experiment will not
significantly improve the results.
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4. It is not a good idea to use a mixture containing only unlabeled and uniformly labeled glucose with MP
experiments. The 0:10:90 mixture used in (Szyperski, 1995) will enlarge the error bars of the reference
experiment by a factor of 2:5 while the more expensive optimal 0:60:40 mixture still has a factor of 1:3. On
the other hand the experiment from (Schmidt et al., 1998a) with a 90:0:10 mixture lies “on the other side” of
the optimum and also yields 1:3. The optimum is 50:5:45, which improves the error bars by a factor of 0:8.

5. Interestingly the MI experiment almost fails to identify the fluxes if only unlabeled and fully labeled glucose
is used. This will be explained in the next paragraph by a detailed inspection of the error bars.

6.2 Detailed comparison of error bars

Figures 7 and 8 show a detailed comparison of some specific experiments taken from the mixture plots in Figure
6. The following results can be found:

1. The MP data set (Figure 7) with a mixture containing only unlabeled and fully labeled glucose almost fails
to identify the pentose phosphate pathway fluxes, which is the main reason for the poor overall performance.

2. The MI data set (Figure 8) with a mixture of unlabeled and fully labeled glucose yields extremely poor results
because the distinction between the two lysine production pathways completely fails. This can immediately
be understood because these pathways run in parallel with a different fate of the carbon atoms coming from
pyruvate and oxalo acetate. These positional changes of the carbon atoms can be well observed with the
positionally sensitive PE and MP experiments (Sonntag et al., 1993) while MS cannot detect a positional
change of labeled atoms because this does not influence the molecular weight.

3. The best MI experiment produces at least a poor (but still practically useless) discrimination between the
two lysine producing pathways. The reason is that not the complete lysine molecule was measured but only
the 2-6-fragment. Thus there is at least some low sensitivity to positional changes of carbon atoms (Figure
8).

4. Interestingly, the best MI discrimination of the lysine pathways is obtained with a pure 1-labeled input.
However the pentose phosphate pathway is badly determined with this substrate.

If the best MP experiment is compared with the best MI experiment and the best feasible PE experiment as is
done in Figure 9 it becomes clear that each of the experiments has its specific strength:

1. If only the pentose phosphate pathway is of interest the PE experiment performs better than both the MP and
MI experiments.

2. MI experiments are unable to distinguish the split lysine pathways but produce the best exchange flux esti-
mates.

3. MP experiments are worst when the pentose phosphate influx and the glycolytic exchange fluxes have to be
estimated.

6.3 Influence of assumed measurement errors

As has been said before, measurement standard deviations for the MP and MI measurements could not be obtained
from literature and thus had to be assumed. To investigate the influence of the assumed values all standard errors
for MPs or MIs were simultaneously varied by a factor between 0.5 and 2.0. The result is that the overall quality
changes with approximately the same factor. For example if the assumed error bars are halved, the estimation
quality doubles (which is not clear a priori because the biomass efflux errors are still kept fixed).

Because the error bars for the PE and MP data sets are rather typical from the already available data sets it is
unlikely that large improvements can be achieved with these types of experiments compared to the results presented
here. On the other hand, it is possible that the real potential of MI data is higher. Thus if the MI measurement error
bars are assumed of half the size – which is believed to be the upper bound by the authors (cf. also (Christensen
& Nielsen, 1999)) – the MI experiment will outperform all other experiments. However, the discrimination of the
lysine fluxes is still not sufficient and, moreover, the outcome is quite sensitive to the input mixture composition.

7 Conclusions

In this contribution the statistical and computational foundations for evaluating general isotopomer experiments
have been laid and a universal framework for the design of experiments has been established and implemented
as a software system. The statistically optimal formulation of the measurement equations turned out to be a
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critical point which has not been recognized hitherto. The framework now offers a large variety of possibilities for
experimental design as was demonstrated by the example.

The investigation of the example enabled the different experimental setups to be quantitatively compared.
Without the extensive performance of simulation studies, as in the example discussed above, it is impossible to
intuitively judge the potential of carbon labeling experiments. These studies could be carried out because the
flexibility of the developed software system and the computational efficiency of the implemented algorithms is
extremely high (see Appendix of Part III). Although the true flux values must be assumed in a design study it turned
out that this method is of practical relevance because the outcome is insensitive with respect to the assumptions
made.

All three experimental techniques (1H-NMR, 13C-NMR or MS) can in principle identify the intracellular fluxes
and none of these approaches is generally superior to the others. On the other hand, it turned out that this discussion
is not fruitful for future developments because there are always certain fluxes (e.g. pentose phosphate pathway
influx or split lysine production pathways) which are best identified by one of the three methods. This shows that
each method will have its own application field in the future and a combination may be the only way in some
situations.

The input substrate composition is very critical for the design of an informative labeling experiment (especially
for MI data). Moreover the experimental design may lead to unexpected results. For example, the inferiority of
1-13C glucose to other singly labeled species in the PE experiment was not recognized before. In many situations
the achieved information improvement well justifies the cost of some more expensive labeled substrates. On the
other hand the combination of the measurement techniques is not always advisable. While MP and MI experiments
will complement each other the PE experiment is rather antagonistic to the others. This means that an informative
experiment for MP and MI is an uninformative one for PE and vice versa.

For the design of an optimal experiment for a certain application problem no general recipes can be given.
In contrast, the best experiment depends on what the focus of interest is. In particular the optimization criterion
has to be chosen appropriately. More precisely, an experimental design must always be an iterative procedure.
An optimality criterion is defined first which is then optimized by a complete inspection of the PE design cube
edges (Figure 3), the whole design space (Figure 4) or by a numerical optimization procedure. This gives a rough
impression about the performance of different experiments. The achieved single parameter confidence intervals
then reveal their specific strengths and weaknesses. Their inspection will lead to a modified criterion (e.g. by
giving up the discrimination of the two lysine production fluxes) and possibly to another optimal mixture. From
this result the whole procedure might start anew.

An important problem for the future will be the assignment of reasonable measurement error bars for MS
experiments. To this end more theoretical and experimental studies are required. Even if it turns out that MI
data really have an outstanding quality it must be pointed out that the assumption of very small error bars will
almost surely produce strong inconsistency problems for fitting the large data sets. These inconsistencies stem
from the simplifying assumptions that are still present in the network formulation and will undoubtedly make data
evaluation more difficult.

With the extension of the statistical framework for carbon labeling experiments from Parts I and II the theory,
the experimental procedures, and the evaluation methods have now reached a certain state of maturity. Software
tools to make flux determination by labeling experiments an affordable routine procedure have been supplied.
Some further work has to be done from the viewpoint of user interfacing because the complexity of the whole
experiment specification can currently not be handled by an inexperienced person. For this reason an integrated
environment with expert components that help the user to specify the details of his experiment is now under
development. A prototype of this system is now running in a spreadsheet environment. Finally, the iterative
experimental design procedure described above will be supported within the environment.
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A Optimal Estimation of Peak Scaling Factors

In (Schmidt et al., 1998a) an estimation procedure for the peak scaling factors has been suggested which is different
from the one given by Equation (10). Both approaches are now compared. For simplicity it is assumed here
that only one metabolite pool is present in the system and only one group of measurement data with the same
scaling factor is present. Additionally, only one flux v has to be estimated in this simple example. The general
measurement model from Equation (8) then reduces to:

y = ! �My � x (v) + "y with Cov ("y) = �y (13)

with a scalar factor !. The difference between the approaches to estimate v from the data vector y can now be
made clear:

1. In (Schmidt et al., 1998a) the parameters ! and v are estimated in succession. To this end, assume for
the moment that v is already known. In this case ! can be easily estimated from any single equation in
the Equation system (13) by dividing a measured value y j by its predicted unscaled value [My � x (v)]j .
However this would lead to a strong propagation of the corresponding measurement error [" y]j . For this
reason an averaging over all values was performed thus producing the estimate:

!̂ = !̂ (v) �
P

j [y]jP
j [Myx (v)]j

=
1T � y

1T �My � x (v)

Here the vector 1T = (1; 1; : : : ; 1)T is introduced to formalize the sum operation. Replacing ! in Equation
(13) by its estimate and dividing by 1T � y the following is now obtained:

y

1T � y
=

My � x (v)
1T �My � x (v)

+
"y

1T � y

This transformed model normalizes both the measurements y and the predicted measurementsM y x (v) by
dividing by their respective sum so that the resulting equation no longer contains !. At the same time the
standard deviations of the error terms are rescaled by a random variable which is the critical operation in
this approach. Assuming that the variance of the mean value 1T � y can be neglected compared to "y it
approximately holds:

Cov

�
"y

1T � y

�
�

1

(1T � y)2
� �y

A least squares fit then leads to an estimate for v:

v̂ = arg min
v

jj
y

1T � y
�

My � x (v)
1T �My � x (v)

jj2�y=(1T �y)2 (14)

with the weighted norm jj�jj2� = �
T ��1 � that has been already used in Part II.

2. The second approach is much more straightforward, but on the other hand involves more computational
effort. Using a standard nonlinear regression approach both parameters! and v are estimated simultaneously
by fitting the data: �

!̂

v̂

�
= arg min

!;v
jjy � ! �My � x (v)jj2�y (15)

An in-depth analysis of the two alternative flux estimators cannot be presented here because too many mathe-
matical preliminaries would be required. In general the well-known Gauss-Markov theorem (Arnold, 1990) states
that (up to linearization) the general regression approach from Equation (15) will always produce the best possible
estimate. Thus it has to be expected that the estimate from Equation (15) will always perform better than the one
from Equation (14).

To quantify the difference Monte Carlo simulation runs were performed by generating 10000 different exper-
iments with normally distributed measurement errors ". The resulting estimates for both approaches were then
computed for each run. Afterwards the two estimators were characterized by the sample mean and standard devia-
tion over all runs. This procedure was carried out for different assumptions concerning the measurement standard
errors. In each case both approaches were almost unbiased but had quite different variances. The approach from
Equation (15) was always better than that from Equation (14), by a factor of 1:2 in typical situations and 10:0 in
exceptionally bad situations depending on the assumed error variances. The difference is most significant when
bad signal-to-noise ratios are present and this is even true when only a few such imprecise values are present. This
situation occurs quite often in a labeling experiment when some peak sizes are close to zero and thus can hardly
be distinguished from the ground noise.

In summary, it is always advisable to take the more rigorous approach from Equation (15) to avoid possible mis-
behavior of the estimation procedure. The consequence is that the scaling factors ! i must always be incorporated
as auxiliary variables into the model and estimated together with the free fluxes.
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B Numerical and Implementation Details

The compiler program for the automatic generation of all system matrices and vectors from the textual input
that was described in Part I and II has been extended to isotopomer systems. The main task was to generate
the isotopomer transition matrices and the measurement matrices. A sparse matrix implementation was used to
implement all the 2- and 3-dimensional matrix structures. Internally the program does all computations by using the
cumomer coordinate system. These coordinates are transformed back to isotopomer fractions if this is necessary
for interfacing with the user.

The numerical solution of the central cumomer balance equations is achieved by applying the cascaded solution
algorithm presented in the Appendix of Part III. All linear equations are solved by using a QR factorization thereby
achieving a numerically stable solution even for very large exchange fluxes. It should be mentioned that a solution
can even be achieved for the limiting case of an infinite exchange flux because the preconditioning method that was
developed in (Wiechert, 1996) can be directly applied to the cascaded system. For the complex central metabolism
example the computation of x from v takes about 2 seconds on a 166 MHz Pentium processor.

Finally, the different mappings in Equation (9) have to be derived. Most of these computations are the same as
in Part II. It has already been explained in the Appendix of Part III how @x=@v can be computed with very low
computational effort (i.e. below 1 second). Additionally, the general measurement Equation (8) must be derived
with respect to x and !. The result is:

@y

@x
=My (!) and

@y

@!i
=My;i � x :

The complete computational procedure has been tested with many different checks which all were passed
successfully:

1. comparison with the analytical solution for the example system in Part III,

2. comparison with the outcome of two completely independent implementations from (Schmidt et al., 1997)
and (Wurzel, 1997) for the pentose phosphate pathway network,

3. comparison with the outcome of an iterative solution algorithm based on (Wiechert et al., 1997b),

4. alternative computation of derivatives by numerical differentiation.

After the parameter covariance matrix Cov (�) has been computed, the D-criterion is obtained from the sin-
gular value decomposition that is also the basis for principal axis computation. A range-restricted evolutionary
algorithm (Bäck, 1996) was used for searching the global optimum in the design cube for the PE example.
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C Figures and Tables

Figure 1: Schematic 1H NMR, 13C NMR, and MS spectra of different alanine isotopomers. The first carbon
atom is not considered for NMR because no proton is bonded to it (no 1H NMR peak) and its 13C-NMR-signal
is generally very weak. For 13C NMR the scalar coupling constant JC2C1

is larger than JC2C3
so that a singlet s,

an A-doublet da, a B-doublet db and a double doublet dd=da+db arise. Isotope effects of non-carbon atoms have
been neglected in the MS spectra.
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Figure 2: Illustration of the optimal design theorem for PE measurements in a) two and b) three dimensions.
Each point in the design square or cube represents the positional enrichments in the input substrate with two or
three carbon atoms. There is a D-value which corresponds to each point and which measures how informative the
corresponding experiment is.
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Figure 3: Relative information yield (compared to the PE reference experiment) for all edges of the design cube
in the example system with PE measurements. Additionally the number of labeled carbon atoms of each input
isotopomer and the improvement of the pentose phosphate pathway influx estimate is displayed. Mirror images
and uniformly labeled substrates are ommited.
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Figure 4: Relative information yield for all mixtures of 1-, 2- and 3- 13C labeled glucose when only PE measure-
ments are given. Each corner of the mixture triangle corresponds to a mixture with 100% of a component. The
reference value 1 is indicated by thick lines. The labels indicate those experiments which are shown in more detail
in Figure 5.
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Figure 5: Comparison of all estimated single parameter standard deviations for the PE data set with glucose labeled
at positions a) 1,3,6, b) 1,2,4 , c) 2, d) 3, e) 1 as input substrate. The meaning of the flux names is given in the text.
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a)

b)

Figure 6: Relative information yield for all mixtures of 1-labeled, unlabeled and uniformly labeled glucose as input
substrate with a) MP measurements, b) MS measurements. The labels indicate those experiments which are shown
in more detail in Figure 7 and 8.
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Figure 7: Comparison of all estimated single parameter standard deviations for the MP data set with a) 0:90:10,
b) 0:60:40, c) 90:0:10 and d) 50:5:45 mixtures of 1-labeled, unlabeled and uniformly labeled glucose as input
substrate.
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Figure 8: Comparison of all estimated single parameter standard deviations for the MI data set with a) 0:20:80, b)
100:0:0 and c) 40:12:48 mixtures of 1-labeled, unlabeled and uniformly labeled glucose as input substrate.
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Figure 9: Comparison of all estimated single parameter standard deviations for the best feasible PE, MP and MI
data sets found in this investigation. a) PE data with 2-labeled glucose, b) MP data with a 50:5:45 mixture and c)
MI data 40:12:48 mixture of 1-labeled, unlabeled and uniformly labeled glucose.

27



Measured Metabolic Carbon PE data MP data Std.Dev.
Metabolite Precursor atom Std.Dev. s da db dd
RNA/DNA Ri5P 1 0.005 0.010 0.010
RNA/DNA Ri5P 2 0.010 0.010 0.010 0.010 0.010
RNA/DNA Ri5P 3 0.010 0.010 0.010 0.010 0.010
RNA/DNA Ri5P 4 0.010 0.010 0.010 0.010 0.010
RNA/DNA Ri5P 5 0.010 0.010 0.010
Phe E4P 5+9 0.010 0.008 0.008 0.008
Phe E4P 6+7+8 0.020 0.008 0.008 0.008
Ser GAP 1 0.004
Ser GAP 2 0.004 0.005 0.005 0.005 0.005
Ser GAP 3 0.004 0.005 0.005
Ala Pyr 1 0.010
Ala Pyr 2 0.010 0.005 0.005 0.005 0.005
Ala Pyr 3 0.010 0.005 0.005
Glu AKG 1 0.005
Glu AKG 2 0.005 0.005 0.005 0.005 0.005
Glu AKG 3 0.005 0.005 0.005 0.005
Glu AKG 4 0.005 0.005 0.005 0.005 0.005
Glu AKG 5 0.010
Asp OAA 1 0.005
Asp OAA 2 0.010 0.005 0.005 0.005 0.005
Asp OAA 3 0.010 0.005 0.005 0.005 0.005
Asp OAA 4 0.010
Lys Pyr, OAA 2 0.005 0.005 0.005 0.005 0.005
Lys Pyr, OAA 3 0.010 0.005 0.005 0.005
Lys Pyr, OAA 4 0.010 0.005 0.005 0.005
Lys Pyr, OAA 5 0.010 0.005 0.005 0.005
Lys Pyr, OAA 6 0.005 0.005 0.005
CO2 1 0.005

Number of Measurements 56 68
Number of Groups 28 21

Table 1: Assumed measurements and the associated standard deviations for positional enrichment (derived from
(Wiechert et al., 1997a)) and multiplet data (derived from (Szyperski, 1995) and (Schmidt et al., 1998b) ). The
scaling factor for the groups is set to 1, i.e. all values can be directly interpreted on a fractional enrichment scale.
The multiplet abbreviations are: s-singlet, da-doublet a, db-doublet b, dd-double doublet. If db is missing dd means
a triplet peak.
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Measured Metabolic Measured MS data
Metabolite Precursor Fragment Std.Dev.
RNA/DNA Ri5P 1-5 0.004
Phe E4P, PEP 2-9 0.004
Ser GAP 1-2 0.004

GAP 2-3 0.004
Gly GAP 2 0.004
Ala Pyr 2-3 0.004
Ala Pyr 1-3 0.004
Leu Pyr 2-6 0.004
Val Pyr 2-5 0.004

Pyr 1-2 0.004
Pyr 1-5 0.004

Glu AKG 1-5 0.004
AKG 1-2 0.004

Pro AKG 2-5 0.004
Asp OAA 1-4 0.004

OAA 2-4 0.004
OAA 2 0.004

Ile OAA 2-6 0.004
Thr OAA 1-2 0.004
Lys Pyr, Asp 2-6 0.004

Number of Measurements 90
Number of Groups 20

Table 2: Metabolite fragments assumed to be measured by GC-MS in the example and the associated standard
deviations (derived from (Christensen & Nielsen, 1999)). The scaling factor for the groups is set to 1, i.e. all values
can be directly interpreted on a fractional enrichment scale.
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