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Abstract: Metabolic carbon labelling experiments enable a large amount of extracellular fluxes
and intracellular carbon isotope enrichments to be measured. Since the relation between the
measured quantities and the unknown intracellular metabolic fluxes is given by bilinear balance
equations, flux determination from this data set requires the numerical solution of a nonlinear
inverse problem. To this end a general algorithm for flux estimation from metabolic carbon la-
belling experiments based on the least squares approach is developed in this contribution and
complemented by appropriate tools for statistical analysis. The linearization technique usually
applied for the computation of nonlinear confidence regions is shown to be inappropriate in the
case of large exchange fluxes. For this reason a sophisticated compactification transformation
technique for nonlinear statistical analysis is developed. Statistical analysis is then performed
by computing appropriate statistical quality measures like output sensitivities, parameter sensi-
tivities and the parameter covariance matrix. This allows to determine the order of magnitude
of exchange fluxes in most practical situations. An application study with a large data set from
lysine producing Corynebacterium glutamicum demonstrates the power and limitations of the
carbon labelling technique. It is shown that all intracellular fluxes in central metabolism can
be quantitated without assumptions on intracellular energy yields. At the same time several ex-
change fluxes are determined which is an invaluable information for metabolic engineering.

Keywords: stationary flux estimation, sensitivity analysis, covariance analysis, non-linear statis-
tics, Corynebacterium glutamicum
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Introduction

In the preceding contribution [Wiechert (1996b)] (henceforth denoted as Part I) we developed
a general modelling approach for stationary metabolic carbon isotope labelling experiments that
extends the well established metabolite flux balancing technique [Vallino (1992), Varma (1994)].
Strong emphasis was laid on the description and analysis of bidirectional reaction steps and
on the documentation and exploitation of biological assumptions made on intracellular fluxes.
A simulation strategy for labelling experiments and the corresponding computational methods
were introduced and some general properties of labelling systems were derived. In this contri-
bution we now concentrate on flux estimation from given experimental data and the statistical
analysis of the achieved results. The problems that have to be expected due to the bilinear struc-
ture of the carbon labelling balance equations with respect to fluxes and fractional labelling have
already been illustrated in Part I.

Available measurement data

The experimental details of metabolic carbon labelling experiments are described e.g. in [Anderson (1983),
Wiechert (1995c), Wiechert (1996a)]. The set of measured data obtained with such experiments
is always subdivided into two parts:

1. Extracellular metabolite fluxes between the cell interior and the surrounding medium or
the biomass like substrate uptake, product formation, incorporation of precursor metabo-
lites into biomass or gas efflux are measured with standard bioreactor instrumentation us-
ing the ideas from [Holms (1986), Neidhardt (1990), Vallino (1991)]. The metabolite flux
balancing technique is solely based on this data [Vallino (1992), Goel (1993), Varma (1994),
Jorgensen (1995)].

2. Fractional enrichments of
���

C label within certain carbon atom positions of intracellular
metabolite pools are measured by NMR. In particular the usage of hydrolysed intracellu-
lar polymers recently led to a dramatically increased amount of available labelling data
[Marx (1996), Wiechert (1996a), Wiechert (1996b)].

For the experiment described in [Marx (1996)] a total of 14 extracellular fluxes and 26 frac-
tional carbon isotope enrichments were determined (including the fractional enrichments of the
ribose-5-phosphate pool that has now also become available). This large amount of measured
data requires the development of sophisticated methods for flux estimation and statistical anal-
ysis.

Flux estimation and statistical analysis

The ultimate goal of our carbon labelling experiments is the estimation of the intracellular metabo-
lite fluxes that were present during the experiment from the available measurement data. While
this can be achieved by direct matrix computations in the case of metabolite flux balancing [Lawson (1974),
Vallino (1991), van Heijden (1994a)] the bilinearity of carbon labelling systems prevents this
simple approach. The same holds for the statistical analysis of the estimated fluxes, i.e. classical
results of linear statistics [Chatterjee (1988)] can be readily applied to metabolite flux balancing
[Wang (1983), Vallino (1991), van Heijden (1994b)] but must be appropriately extended to the
nonlinear situation.
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Currently, only rudimentary results (mostly for special metabolic systems) on flux estimation
and statistical analysis for carbon labelling experiments can be found in the literature. Three
basic approaches can be distinguished:

1. Most authors [Walsh (1984), Jans (1989), Sharfstein (1994), Chauvin (1994), Rollin (1995)]
derived explicit formulas for flux determination based on only a single or a few metabolites
as has been done in Part I for a simple example. This approach is well suited for solving
the general identifiability problem [Wiechert (1995a), Wiechert (1995b)], i.e. for deciding
whether the available data contains sufficient information for the determination of all un-
known intracellular fluxes. Its main disadvantage is that redundant measurement informa-
tion cannot be used for improving the statistical quality of the estimated fluxes. Moreover,
it turns out that for complex networks the algebraic complexity of the involved bilinear
balance equations is much too high for the application of general algebraic solution algo-
rithms [Wiechert (1995b)]. In particular when bidirectional steps are incorporated into the
model an explicit solution that may have been worked out for the unidirectional case will
be much more complicated if not even impossible in the bidirectional case.

2. The graphical technique of contour plot superposition [Zupke (1994)] already used in Part
I for representation purposes enables the uniqueness and well-determinedness of the flux
estimate to be quickly decided and the statistical quality of the estimates can be judged in
a simple way by graphing sensitivities and confidence regions (see below). However, this
method is restricted to low-dimensional parameter spaces and is again not suited for the
exploitation of redundant information contained in additional measurements.

3. A generally applicable numerical approach that can utilize redundant measurements and
enables statistical quality measures to be derived as well is the familiar parameter fitting
approach [Crawford (1983), Rabkin (1985), Chatham (1995), Marx (1996)]. However, it
is well known that this approach may suffer from the existence of multiple solutions or ill
determined estimates due to non-identifiable parameters. In Part I an example from the
cyclic pentose phosphate pathway was given, for which two alternative flux solutions can
be found (cf. [Zupke (1994)] for another example).

From these approaches only the last one can be universally applied to any carbon labelling ex-
periment because it does not require any model-specific work. Moreover (as is explained be-
low) this method can always accompanied by linearized statistical analysis in a canonical way.
Finally, the existence of possible multiple solutions can in practice be detected by a multiple
offset of the parameter fitting algorithm (see below). For these reasons we have pursued a pa-
rameter fitting approach. The reader interested in general algebraic approaches for explicit flux
determination and identifiability analysis is referred to [Wiechert (1995a), Wiechert (1995b)].

Aims of this contribution

Our aim was to extend the well established computational and statistical theory for linear metabo-
lite flux balancing [Vallino (1991), van Heijden (1994a), van Heijden (1994b)] to the more gen-
eral non-linear case of carbon labelling systems based on the general model described in Part I.
The result is a universal method for metabolic flux estimation and statistical analysis by station-
ary carbon isotope labelling experiments. After a comprehensive summary of the general model
equations from Part I this contribution concentrates on the following aspects:
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i) The development of a powerful generally applicable algorithm for flux estimation that can
be applied to any metabolic network, respects all imposed flux constraints and is numeri-
cally stable when large exchange fluxes occur (cf. Part I).

ii) The exemplification and in depth discussion of the nonlinear statistical problems caused by
measurement errors leading to a powerful generally applicable nonlinear transformation
method for estimating confidence regions.

iii) The demonstration of the power and limitations of the statistical methods using a complex
application example concerned with lysine producing Corynebacterium glutamicum. As
in Part I the main emphasis will be on the question to what extent exchange fluxes can be
estimated from the given data set.

iv) The implementation of all described algorithms within a flexible software framework as
documented in Appendix B.

This distinguishes the current approach from formerly applied flux estimation methods in-
cluding the preliminary parameter fitting approach applied in [Marx (1996)]. Another important
aspect of the availability of redundant measurements is the possibility to improve the statistical
quality of the computed flux estimate, to test the models’ ability to describe the measured data,
to detect gross measurement errors and to perform validation studies by comparing different
models [Wang (1983), Vallino (1991), van Heijden (1994a), van Heijden (1994b)]. These tech-
niques will be shortly addressed although we cannot elaborate on them in this context.

Summary of model equations

The introduced symbols and general model equations derived in Part I are summarized below to
supply all structures required for the solution of the flux determination problem.

Transformations, balances and constraints

1. The state variables are given by the following vectors (where both flux vectors � � � � �
have the same dimension):

fractional labelling state of all enumerated carbon pools � �
% 	

labelling state of the enumerated input carbon atoms � inp
�
% 	

enumerated forward metabolite fluxes � � �
mol/(h 
 g DW ��	

enumerated backward metabolite fluxes � � �
mol/(h 
 g DW ��	

2. Fluxes are alternatively represented within three different coordinate systems by

natural flux coordinates as forward and backward fluxes � � � � �
application flux coordinates as net and exchange fluxes � net � � xch

numerical flux coordinates as net and
��
 ��� 	 -rescaled exchange fluxes � net � � xch[0,1]

where all flux coordinate vectors � � � � � � � net � � xch have the same dimension and physical
unit while � xch[0,1] is dimensionless. The respective coordinate transformations defining
these alternative coordinate systems are given by����� � net� xch � ��� � � �� � ��� � � xch �����! #"$� � net �&% �� xch �����! #" � net �&% � � (1)
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where % is the zero vector and the minimum has to be taken component-wise and the com-
pactification map� [0,1]' ��� � net� xch[0,1] � ��� � � net� xch �(� � � net) 
�� xch[0,1] * ",+-� � xch[0,1] � � . (2)

Herein all entries of the vector + are � , ) is a fixed constant (a good choice being the rate of
substrate uptake into the system) and the vector division has to be taken component-wise.

3. The carbon label flux balance equations exhibit the general structure/1032 � �2 
54 �276 032 � �2 
54 �298 
:� 6 /10;2 � �2 
<4 inp

2=8 
�� inp � % (3)

with the square > �?� �#@�> �!� � atom transition coefficient matrices 4 �2 � 4 �2 �BA � �C� .!.?. � > �?� � � ,
and the > �!� �D@E> �!� � inp input atom transition matrices 4 inp

2 �&A � �F� .?.!. � > �!� � � .

4. Various assumptions about metabolite fluxes like metabolic stationarity, unidirectionality
of reaction steps or rapid equilibria caused by large exchange fluxes are expressed by two
linear flux constraint equations G

net 
�� net � H net

and

G
xch[0,1] 
�� xch[0,1] � H xch[0,1]

� (4)

where the > �?�IH net @J> �?� � net net flux constraint matrix

G
net, the > �?��H xch[0,1] @J> �!� � xch[0,1]

exchange flux constraint matrix

G
xch[0,1] and the constraint value vectors H net � H xch[0,1] are

given and fixed.

5. When redundancies of equations are excluded (which should always be the case for a
correct model formulation) the Equations (4) leave > �?� � net

6 > �?� � xch[0,1] � > �!��H net �> �!��H xch[0,1] degrees of freedom for the determination of all flux coordinates. The free flux
coordinates representing these degrees of freedom are defined by an arbitrarily given third
constraint equation G

free 
 � � net� xch[0,1] ���7H free . (5)

The combined constraint matrix and the combined constraint value vector are then defined
by G � KL G

net %% G
xch[0,1]

G
free MN and H��OKL H netH xch[0,1]H free MN .

The choice of

G
free is only restricted by the requirement that

G
is square and invertible.

By combining Equations (4) and (5) we then get the overall linear constraint equation than
can be formulated within different coordinate systems byG 
 �JP �1Q " � [0,1]' � P � � � �� � �(� G 
 � � net� xch[0,1] �(�RH . (6)

Notice that this equation is linear in the " � net � � xch[0,1] � coordinate system but non-linear
with respect to " � � � � � � .
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6. Similarly a combined inequality constraint equation for specifying range restrictions or
directionality assumptions is given byS 
 � P � Q " � [0,1]' � P � � � �� � ��� S 
 � � net� xch[0,1] �(TRU (7)

with a > �?�VU @ " > �?� � net

6 > �!� � xch[0,1] � matrix
S

and the inequality value vector u. The
fluxes � net � � xch[0,1] (or � � � � � respectively) satisfying these constraints are called feasible
fluxes.

7. In this contribution the flux and label measurement equations given by Equations (14) and
(15) will be added to the model equations.

Derived equations

Two important results that have been proven in Part I will be used in the following:

1. The labelling state � turns out to be a function W of the natural flux state obtained by solving
Equation (3):� � W � � �� � �X�(� /10Y2 � �2 
�4 �2 6 032 � �2 
54 �2 8 P � 
 /1032 � �2 
54 inp

2=8 
�� inp (8)

2. There exists a matrix Z free and a vector [ free such that the solution of Equation (6) as a
linear function \ of H free is given by (see Equation (21) in Part I)� � �� � � � \ "�H free � � Z free 
 H free

6 [ free . (9)

A Simple Example

The simple example network used in Part I to introduce the model equations will also serve as an
example in this section to illustrate the statistical problems of flux determination and confidence
region estimation from measurements. The main emphasis of this section is to demonstrate the
strong non-linear statistical effects that are caused by large exchange fluxes and their mathemat-
ical treatment by non-linear rescaling.

Example network

Using the formal notation introduced in Part I the example network structure with the corre-
sponding carbon atom transitions is given by

V1: A � B
#uv � #uv ;

V2: B � C
#wx � #wx ;

V3: B � C
#wx � #xw ;

V4: C � D
#yz � #yz ;

.

i.e. V3 reverses the position of the two carbon atoms B1 and B2 involved while all other steps
leave positions unchanged. A graphical network representation is shown in Part I. We then have� �]"�^ � � ^`_ �&a � �&a _ ��b , � � �("dc �� � c �_ � c �� � c �e � and � � �("�c �� � c �_ � c �� � c �e � . The system matrix
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f 2hg �jilklkli e � �2 
�4 �2 6 f 2hg �jilklkli e � �2 
54 �2 and the label input matrix
f 2hg �jilklkli e � �2 
54 inp

2
for carbon

flux balancing is consequently given byKmmL �#c �_ �Dc �� . c �_ .. �nc �_ �oc �� . c �_c �_ c �� �nc �_ �Dc �e .c �� c �_ . �#c �_ �Dc �e M�ppN and KmmL c �� .. c ��. .. . M�ppN
while the metabolite flux balances, unidirectionality of V1, V3, V4 and the values for the chosen
free flux coordinates c net� � c net_ � c xch[0,1]_ are expressed by the combined constraint equationKmmmmmmmmmmL

� � � � � . . . . .. � � � � . . . .. . . . � . . .. . . . . . � .. . . . . . . �� . . . . . . .. � . . . . . .. . . . . � . .
M�ppppppppppN

 KmmmmmmmmmmL

c net�c net_c net�c netec xch[0,1]�c xch[0,1]_c xch[0,1]�c xch[0,1]e
M�ppppppppppN � KmmmmmmmmmmL






a net�a net_a xch[0,1]_
M�ppppppppppN

This leaves three degrees of freedom for simulation, represented by the values of a net� �&a net_ �&a xch[0,1]_ .

Flux determination and exact confidence intervals

Suppose that the net flux c net� and the fractional labels ^ � �&a � have been measured. The aim of flux
determination is the determination of values for the free fluxes c net� � c net_ � c xch[0,1]_ that reproduce
these measured data. Assuming for simplicity that the substrate uptake c �� has been directly
measured as c �� � � with good precision (cf. the analysis in Part I) we can concentrate on the
relation between "dc �_ � c �_ � and "d^ � �&a � � . From Part I the free fluxes c net_ � c xch_ corresponding to
given values of ^ � �&a � are computed as"�c �_ � c �_ � � q P � "�^ � �&a � � � "r�tshuwv�xYywv P ��z s � P ywv zs _ uwv P �dz shywv P uwv z � � � P uwvywv P uwv �"�c net_ � c xch_ � � { P � "dc �_ � c �_ � � " c �_ �Dc �_ � ���? |"�c �_ � c �_ �r�
which gives rise to the one-to-one mappings q and { .

In practice only noisy measurements of ^ � �&a � are available. Denoting the measurement errors
by } u � } y respectively, the estimated fluxes based on noisy measurement data are given by"5~c net_ � ~c xch_ � �R{ P ��Q q P � "�^ � 6 } u �&a � 6 } y � . (10)

Now the usual assumption of independent normally distributed errors with expectation



and
variance � _ is made, i.e. " } u � } y ���o� " %�� � _ 
 + � (with + denoting the unit matrix). Given some
specified confidence level � we consider the circle � � P�� "�^ � �Ba � � centred at "�^ � �&a � � with radius� � __ " � � ��� (where

� _� denotes the chi-square distribution with � degrees of freedom):� � P�� "�^ � �Ba � � �X��"d^ � 6 } u �&a � 6 } y ����} _u 6 } _yJ� � __ " � � ���$�
By definition of

� _� the probability of the event that "�^ � 6 } u �&a � 6 } y � lies in this circle is exactly
[Arnold (1990)] � � "�^ � 6 } u �&a � 6 } y ����� � P�� "d^ � �&a � �d	 � � � � .
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Applying the mapping { P � Q q P � on both sides of the � -symbol and using Equation (10) we get� � "5~c net_ � ~c xch_ ��� { P � Q q P � " � � P�� "d^ � �&a � �$��	 � � � � �
i.e. the circles’ pre-image under { P � Q q P � in the "�c net_ � c xch_ � space represents an exact " � � ��� -
confidence region for the estimated parameters:

Conf � P�� "�c net_ � c xch_ � �R{ P � Q q P � " � � P�� "d^ � �&a � �$�
Clearly, in practice the computation of confidence regions must be performed around the

estimated fluxes "5~c net_ � ~c xch_ � because the true values are not available. However, all arguments
remain valid when the circles are centred at the measured values "�^ � 6 } u �&a � 6 } y � .
Properties of the exact confidence intervals

Figure 1a shows some representatively chosen circles � � P�� "d^ � �&a � � for � � � � 90% and � _ �
 . 
C
F� _ (i.e. a 0.8 % measurement error) in the "d^ � �Ba � � plane. Figure 1b then illustrates how these
circles are mapped onto the "dc net_ � c xch_ � plane by { P � Q q P � . A close inspection of these exact
confidence regions Conf � P�� "�c net_ � c xch_ � leads to the following conclusions:

1. The exact confidence regions are irregularly shaped so that for higher-dimensional systems
their geometric description will become increasingly difficult.

2. In most cases the net flux c net_ is estimated within reasonable tolerance. In the worst case
being a simultaneously large exchange flux c xch_ it is still much better determined than the
corresponding exchange flux.

3. Only small exchange fluxes c xch_ can be determined with narrow confidence intervals from
measurements while large exchanges are highly sensitive with respect to measurement er-
rors.

4. For large exchange fluxes the exact confidence interval may include the possibility of an
infinitely large flux which will lead to severe problems for a general numerical solution.

Summarizing, exchange fluxes can in most situations only be estimated within an order of magni-
tude while net fluxes remain always (comparatively) better determined. However, the tolerances
may still be sufficient to distinguish large exchange fluxes from small ones. This is valuable in-
formation for metabolic modelling.

Linearized statistics

Due to the generally irregular shape of the exact non-linear confidence regions an approximation
has to be found that comes close to the exact region and at the same time can be described with
a small set of practically meaningful parameters. A similar situation is known from the char-
acterization of probability distributions where expectations and covariances are often taken as
characteristic parameters while higher order moments are neglected.

The usual approach for obtaining an approximation to Conf � P�� "dc net_ � c xch_ � is by computing
a linearization of { P � Q q P � around "�^ � �&a � � , i.e.

Lin ��� vd�d� � vshuwv i ywv z "�^ � 6 } u �&a � 6 } y � �R{ P � Q q P � "d^ � �&a � � 6(� "�{ P � Q q P � �� "d^ � �&a � � "�^ � �&a � ��
 � } u} y � . (11)
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Replacing the original non-linear mapping { P � Q q P � by this approximation the exact confi-
dence region around "dc net_ � c xch_ � can be approximated by the elliptical region:

Conf � P�� "�c net_ � c xch_ ��� Lin � � v �w� � vshuwv i ywv z " � � P�� "�^ � �Ba � �$� (12)

Since ellipsoids can be conveniently described by their centre and their principal axes [Press (1988)]
this approximation can be practically interpreted even for higher-dimensional models.

Figure 1c shows the results for the circles of Figure 1a. It turns out that the approximation
is practically useless in case of large exchange fluxes c xch_ . Compared with the exact confidence
regions the approximating ellipses are then displaced towards low exchange fluxes. For practical
application this result is disappointing because the linearization leads to a significantly reduced
ability to distinguish large exchange fluxes from small ones.

To explain the mathematical reason for this poor result we reduce the dimension by fixing
the rather well determined flux c net_ to its estimated value and focus upon the variation of c xch_ .
Figure 2a then illustrates the dependency of a � on c xch_ for fixed c net_ . As has already been pointed
out in Part I, the values of ^ � �&a � tend to a limit value for large exchange fluxes. Consequently,
the labelling state becomes more and more insensitive with respect to c xch_ when c xch_ � � . The
tangent line to the curves (i.e. the linearization) in Figure 2a then tends to a horizontal line. This
line is an extremely poor global approximation to the original curve over the whole value range��
 � � 	 .

Thus the reason for the observed poor approximation results is that the linear approxima-
tion of the function { P � Q q P � given by Equation (11) is not able to follow the curvature of the
original function well enough. In general, from the theory of non-linear statistics it is known
[Pázman (1993)] that the approximation quality of a linearization depends on the curvature of
the linearized function. Functions with low curvature (so called “flat models” [Pázman (1993)])
tend to exhibit good linearization results.

Non-linear rescaling

In order to obtain a better approximation for the exact confidence region Conf � P�� "�c net_ � c xch_ � a
non-linear transformation of the mapping { P � Q q P � must be found that reduces the curvature
and thus is more suitable for linearization. Our solution is given by the compactification map-
ping between the application flux coordinate c xch_ � ��
 � � 	 and the numerical flux coordinatec xch[0,1]_ � ��
 ��� 	 that has already been introduced in Part I and Equation (2). Using

) �Rc net� � �
(as in Part I) a flux estimate in the new coordinate system is obtained by"5~c net_ � ~c xch[0,1]_ � �-"�{ [0,1]' � P � Q { P � Q q P � "�^ � 6 } u �&a � 6 } y �

with "�{ [0,1]' � P � "�c net_ � c xch_ � ���jc net_ � c xch_ * " � 6 c xch_ �j  .
The dependency of a � on c xch[0,1]_ � ��
 �<� 	 for fixed c net_ is shown in Figure 2b. Obviously this
mapping has an extremely low curvature and thus is much better linearizable than that shown in
Figure 2a. Consequently, the tangent line to this curve will produce a good approximation over
the complete value range

�¡
 ��� 	 of c xch_ .

Of course, the approximated elliptical confidence region based on the linearization Lin s � [0,1]¢ z � v � � � v �w� � vshuwv i ywv z(computed analogously to Equations (11) and (12)) is situated in the "�c net_ � c xch[0,1]_ � space. In or-
der to compare the quality of this approximation with that of Equation (12) this elliptical confi-
dence region must be transformed back to the "dc net_ � c xch_ � space via { [0,1]' . The result shown in Fig-
ure 1d turns out to correspond extremely well with the exact confidence region Conf � P�� "�c net_ � c xch_ �
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for all circles in Figure 1a! Therefore the non-linear coordinate change to the numerical flux
coordinates enables an almost exact region to be computed that is defined by the characteristic
geometric parameters of an ellipse together with the known transformation {�£ ¤ il�¦¥' .

In many application cases it is sufficient to compute approximative confidence intervals for
single parameters only. Assuming that a confidence interval

� ~c xch[0,1]_ �E§ � ~c xch[0,1]_ 6 § 	 has been
computed in the "�c net_ � c xch[0,1]_ � space using the methods presented below it is easily transformed
back via { £ ¤ il�¦¥' to the unsymmetrical interval¨ ) 
 ~c xch[0,1]_ �D§� ��"5~c xch[0,1]_ �D§ � � ) 
 ~c xch[0,1]_ 6 §� ��"5~c xch[0,1]_ 6 § �`© . (13)

This should at least enable the order of magnitude of c xch_ to be determined. The general message
of the studied example is that flux estimation as well as the computation of statistical quality
measures should always be performed in a suitable coordinate system like " � net � � xch[0,1] � . An
interpretation in the " � net � � xch � system (which is more convenient for practical purposes) can
then be obtained by back-transformation using { [0,1]' .

Flux Estimation

The main difference between the general situation and the example is that redundant measure-
ment information may now be available. The determination of the intracellular fluxes then poses
an inverse problem associated with the general model Equations (3), (6), (7) that is usually solved
by a least squares approach [Bates (1988), Seber (1989)].

The general theory of flux estimation and the computation of statistical quality measures is
developed in this and the following section. For that purpose all concepts presented in the pre-
ceding section have to be generalized appropriately. The mathematical foundation for this gener-
alization is given by the fact that the compactification method developed for the simple example
can be readily taken over to the general case. The mathematically rather involved proof can be
taken from [Wiechert (1995c)].

Measurement equations

The relation between the fluxes and labelling fractions predicted by the model and their noisy
measurements is given by the measurement equations that we develop now. To start with, two
measurement matrices ª]« (for net fluxes) and ª]¬ (for labels) are introduced that indicate which
coordinate entries of � net and � are actually measured.

In the example the extracellular net flux c net� and the fractional labels ^ � �Ba � (enumerated as� � and � � ) are assumed to be measured, which is expressed by the matricesªX« �­� � .�.�.   and ª]¬ � � � . .�..�. � . � .
If no measurement noise is present the resulting vectors of measured net fluxes and measured

label fractions are given by ® � ªX«R
;� net and ¯ � ªX¬°
;� . Denoting the corresponding
measurement noise vectors by }5« and }5¬ and keeping in mind that � net � � � � � � we end up
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with two measurement equations:

the flux measurement equation ® � ªX« 
 " � � � � � � 6 }5«� " ªX« � � ªX«��±
 � � �� � � 6 }5«
the label measurement equation ¯ � ªX¬ 
 � 6 }5¬ (14)

Additionally, the statistical properties of the measurements have to be expressed. The usual as-
sumption is that the noise terms }²« � }5¬ are normally distributed with expectation vector % and
covariance matrices ³9« � ³9¬ : } « � � " %�� ³ « �} ¬ � � " %�� ³ ¬ � (15)

In the example the measurements were assumed to be independently distributed with the same
variance � _ for the label measurements and some other variance ´ _ for the flux measurement.
The associated covariance matrices are:³ « � � ´ _   and ³ ¬ � � � _ .. � _ �
It should be noticed that the diagonal shape need not always be the case because the measure-
ments can exhibit correlations which may not be negligible. An in depth discussion of this prob-
lem and the choice of appropriate covariance matrices can be found in [Wiechert (1995c)].

Sum of squares function

The discrepancy between the system state predicted by the model and the measured values is
quantitated by the familiar sum of squares function. In order to obtain a proper weighting of
measurement errors the covariance matrices must be incorporated within this function by using
a squared weighted norm that is defined now.

Since a covariance matrix ³ is always square, symmetric, and positively definite, its square
root µ ³ can be computed (e.g. by using a Cholesky factorization [Horn (1985)]) satisfying the

condition µ ³ b 
5µ ³ � ³ . The squared weighted norm associated with a covariance matrix ³
enables a measurement error vector } to be appropriately weighted as:�?� }¶�!� _· � } b 
C³ P � 
�} �(" µ ³ P � }¸� b 
 " µ ³ P � }¸�

Using this notation the sum of squares function is given in terms of the natural flux variables� � � � � and the labelling state � by:¹ " � � � � � � �1� � �?� ® � ªX«o
 " � � � � � �<�?� _·¶º 6 �!� ¯ � ªX¬9
��J�?� _·3» (16)

In the example we have the weighted sum of squares¹ " � � � � � � �1� �½¼ } u�¿¾ _ 6 ¼ } y�¿¾ _ 6 ¼ }5À´¿¾ _
where } u � } y � }5À denote the respective measurement errors for ^ � �Ba � � c net� .
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Least squares estimation

The general least squares estimate (which equals the maximum likelihood estimate for normally
distributed errors [Seber (1989)]) is now obtained by constrained minimization of the sum of
squares function from Equation (16):

minimize ¹ " � � � � � � �1�
subject to the constraints given by Equations (3), (6) and (7)

(17)

This poses a quadratic minimization problem with non-linear equality and inequality constraints.
Aiming at a simplified representation of this problem the mappings \ from Equation (9) andW from Equation (8) can be used. All equality constraints are thereby reduced by parametrizing

their solution space with H free. Replacing the corresponding terms in Equation (14) the mini-
mization problem from Equation (17) transforms to:

minimize ¹ "dH free � � �?� ® �-" ªX« � � ª]«��&
 � Q � [0,1]' Q \ "�H free �<�?� _· º6 �?� ¯ � ªX¬Á
ÂW Q � Q � [0,1]' Q \ "�H free �<�?� _· »
subject to the inequality constraints

S 
C\ "�H free � T�U (18)

Some details on the numerical solution of this linearly constrained non-linear minimization
problem are given in Appendix B. Having computed an estimate ~H free, the corresponding esti-
mates for fluxes in the application coordinate system and the labelling state can be computed
from � ~� net~� xch � � � [0,1]' Q \ "dH free � and ~� � W Q � � ~� net~� xch � (19)

Statistical Analysis

Having computed ~H free its statistical quality must be judged. To this end statistical quality mea-
sures like the output and parameter sensitivities, the covariance matrix and parameter confidence
regions must be derived. Since H free is actually composed from coordinate entries of the numer-
ical flux vectors the model linearization in the numerical flux coordinate space as described for
the simple example will lead to good approximation results. Thus standard procedures based on
linear regression theory [Pázman (1993)] are applicable.

Statistical notation

To obtain a very compact notation of the constrained least squares problem (18) we introduce
the following new symbols:

1. The parameter vector H free is replaced by Ã which in regression theory is the familiar sym-
bol for the estimated parameter vector.

2. The combined measured output vector Ä and its covariance matrix ³ are represented byÄ � � ®¯ � and ³ � � ³9« %% ³ ¬ � .
11



3. The overall input-output function is then given by (cf. Equation (18))Å " Ã9� � � " ªX« � � ªX«Æ�&
 � Q � [0,1]' Q \ " Ã9�ªX¬Á
ÇW Q � Q � [0,1]' Q \ " Ã9� � (20)

4. Finally with È � S 
�Z free and É �7UÊ� S 
d[ free (cf. Equation 9) the inequality constraints
are written as È­
CÃ T É . (21)

With these abbreviations we end up with the general non-linear constrained regression model:Ä � Å " Ã9� 6 } subject to È�
CÃ T É and }Á��� " %Ë� ³Á� . (22)

The corresponding least squares estimator is denoted as usual by ~Ã .

Statistical quality measures

The key to the computation of statistical quality measures for the estimated parameter ~Ã is the
evaluation of the model Jacobian matrix

� Å * � Ã " ~Ã#� , i.e. the linear approximation of the non-
linear model Equation (22) around ~Ã . This model linearization is well known as the (absolute)
output sensitivity matrix of the system [Chatterjee (1988)]. The output sensitivity reveals how
the measured state variables will be influenced by a differential change in Ã . More details con-
cerning its computation can be taken from Appendix B. Having once linearized the model, all
the results from linear statistical theory can be (approximately) applied [Pázman (1993)]. In par-
ticular we compute the following quantities:

1. For a proper linear approximation of the estimator’s statistical properties the output sensi-
tivities are weighted by the measurement covariance matrices to obtain the weighted out-
put sensitivity matrix:

Sens
« i ¬Ì " ~Ã9� � µ ³ P � 
 ��Í� Ã " ~ÃÊ�

2. From the weighted output sensitivity at ~Ã the estimator’s covariance matrix is approxi-
mated:

Cov " ~ÃÊ���OÎ Sens
« i ¬Ì " ~Ã9� b 
 Sens

« i ¬Ì " ~Ã9�dÏ P � .
In particular the parameter variance estimates are given by the diagonal vector, i.e. Var " ~Ã9� �
diag Cov " ~ÃÊ� .

3. Elliptical parameter confidence regions in the Ã -space for a given confidence level � can
now be computed from Cov " ~Ã9� by:

Conf � P�� " ~Ã9��� � ÃÐ� " Ã � ~Ã9� b 
 Cov " ~Ã9� P � 
 " Ã � ~Ã9� � � _Ñ&ÒlÓJÌ " � � ���;� (23)

A confidence interval for a single parameter ~Ã 2 is given by� ~Ã 2 �Ô§ � ~Ã 2 6 § 	 with §Õ� � _ � " � � �1�Ö
 Var " ~Ã 2 � . (24)

4. Finally, the weighted parameter sensitivity matrix tells us how the parameter estimates are
influenced by a change in some measured value. It is obtained by neglecting second order
terms as

Sens ×Ì« i ¬ � Cov " ~Ã9��
 Sens
« i ¬Ø " ~Ã9� b .
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All formulas have been given for the free parameter estimator ~Ã in the numerical flux coordi-
nate system. Clearly, these results can be immediately transferred to results on ~� net � ~� xch using
Equation (19). This produces confidence intervals for all interesting parameters in the system.
The numerically stable computation of these quantities by a singular value decomposition is de-
scribed in [Press (1988)].

Analysis of the Central Metabolism of Corynebacterium glutam-
icum

The complex data set discussed below is taken from [Marx (1996)]. It consists of the directly
measured extracellular fluxes and fractional labelling values from a continuous culture of Corynebac-
terium glutamicum under lysine-producing conditions. The underlying metabolic network with
the flux names is presented in Figure 3a and the corresponding carbon atom transitions can be
taken from Appendix A. An important addition compared to [Marx (1996)] is that the

�w�
C en-

richments of the ribose-5-phosphate pool have meanwhile become available from the ribonu-
cleotides isolated from RNA. The details of the preparation will be presented elsewhere.

A very important fact with respect to the investigation of bidirectional reaction steps is that�
1-
�w�

C 	 glucose was taken as a substrate. The labelled carbon atom is immediately split off as
CO _ in the oxidative pentose phosphate pathway. Thus when all reaction steps are assumed to be
unidirectional no

���
C enrichment is expected in the intermediates of the non-oxidative pentose

phosphate pathway. However high fractional labelling values were measured in erythrose-4-
phosphate and the pentose-phosphate pools (see Table II). This is already evidence for the exis-
tence of significant exchange fluxes in the pentose phosphate pathway.

Whereas in the original publication [Marx (1996)] no statistical data were given, the newly
developed software tools allowed the statistical quality of the flux estimates to be investigated
for the first time. Moreover, the additionally available measurements were used for further im-
provement of the estimate’s statistical quality. Since the focus of this contribution is on mod-
elling and data analysis the biological implications of this experiment are not discussed here (see
[Marx (1996)]).

Metabolic network and assumptions

The metabolic network model from Figure 3a developed by us has the following most important
features:Ù

Some reaction steps are assumed to be unidirectional. Those steps which are assumed to
be bidirectional are labelled with two values in Figure 3b.Ù
Since at this stage we cannot discriminate between fluxes involving the malate and the
oxaloacetate pool, respectively, all anaplerotic carboxylation reactions are represented by
one single bidirectional reaction step from PEP/Pyr to Mal/OAA. It must be pointed out
that this local simplification does not influence the other flux estimates in the system as
has been shown in [Wiechert (1995a)] by algebraic identifiability analysis.Ù
In contrast to [Marx (1996)] the pentose-phosphate pools (ribulose-5-phosphate, xylulose-
5-phosphate, ribose-5-phosphate) are now merged together in one pool by rapid equilib-
rium assumptions (cf. [Wiechert (1996b)]). This is probably justified because, with the
new ribose-5-phosphate measurements available, flux estimations showing high exchanges
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between the three pentose-5-phosphate pools consistently led to the lowest sum-of-squares
deviation.Ù
It should be noticed that lysine is produced via two parallel pathways in Corynebacterium
glutamicum [Sonntag (1993)]. These are the diaminopimelate dehydrogenase pathway
(ddh) and the succinyl-diaminopimelatedehydrogenase pathway (succ-dap) which are dis-
tinguished by the different fates of the carbon atoms.

Measured data and flux estimation

The substrate uptake, the biomass effluxes and the product formation of CO _ and lysine were
directly measured as presented in Table I. All measured fractional carbon enrichments can be
taken from Table II.

The metabolite flux balances now leave three degrees of freedom for net fluxes. As the free
net fluxes we have chosen:

pppnet� in the oxidative pentose phosphate pathway
gcnet� in the glyoxylate cycle
lpnet_ in the ddh lysine production pathway

The set of free fluxes is completed by all exchange fluxes of reaction steps that are assumed to
be bidirectional, i.e.

pppxch_ � pppxch� � pppxche in the pentose phosphate pathway
glyxch� � glyxch� in glycolysis
cacxche in the citric acid cycle
acxch in the anaplerotic section

Based on this data extensive simulation studies and a repeated offset of the parameter-fitting
algorithm led to a uniquely determined minimum of the least squares problem (18). The local
optimality has been verified graphically and by by inspecting the computed gradient of ¹ "�Ú � .
Moreover, no constraints became active for the computed flux estimates as presented in Figure
3b, where all fluxes are normalized to a substrate uptake rate of 100 %.

In Table III the resulting estimates for the free fluxes together with their unsymmetrical 90%
single parameter confidence intervals computed from Equations (24) and (13) are given. The
parameter

) � � . 
 (corresponding to 100 % substrate uptake) was used for the flux transforma-
tion

� [0,1]' . The variance estimates obtained for substrate uptake, product formation and biomass
effluxes are omitted in Table III for the sake of brevity. As can be seen in Table I their estimated
values are almost identical to the measured values considering the given measurement standard
deviation. Moreover, each net flux estimate turned out to be almost uncorrelated to all other net
flux estimates. For that reason the variances of all non-free net fluxes can be easily computed
from Equation (19) because variances have simply to be wheighted with their squared linear co-
efficients and then summed up. For this reason all linearly dependent fluxes have confidence
regions in the same order of magnitude as the involved free net fluxes. Because this paper con-
centrates on the statistically critical aspects we now focus on the analysis of the intracellular free
fluxes.

Analysis of the covariance matrix

As becomes clear from Table III all free net fluxes are well determined from the measured data
with the largest confidence interval in pppnet� . Of course the absolute size of the confidence rea-
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gions has to be compared here because small fluxes (like gcnet� ) can in general not be estimated
with smaller confidence regions than large fluxes. Contrastingly, the exchange fluxes can only
be given within their order of magnitude. Compared with the corresponding net fluxes the ex-
change fluxes in Gly1 and PPP2 can be considered close to equilibrium while those in PPP3,
PPP4 and AC are medium sized and Gly3, CAC4 is rather low.

The next question is whether there are correlations between the flux estimates, which of
course has to be decided in the numerical flux coordinate system where the linearization of Equa-
tion (22) takes place. A detailed insight into these correlations can be achieved by an inspection
of the parameter confidence ellipsoid as given by Equation (23). Its longest principal axes in
the Ã -space are reproduced in Table IV. The axis length varies within three orders of magnitude
with two exceptionally long axes. The longest axis is almost completely determined by the en-
tries for glyxch[0,1]� and pppnet� , i.e. these estimates are highly correlated. However, the variation in
the glyxch[0,1]� direction is much larger, which leads to the large confidence interval for glyxch[0,1]�
while that for pppnet� is substantially smaller. The second long axis reveals a similar dependency
between glyxch[0,1]� and acxch[0,1] where now glyxch[0,1]� is not well determined. All other axes are
at least one order of magnitude shorter, i.e. not critical. A further group of correlated fluxes can
be identified with pppxch[0,1]_ � pppxch[0,1]� � pppxch[0,1]e (i.e. the pentose phosphate exchange fluxes).

The principal component analysis proves that the covariance matrix is not singular, i.e. the
required information for a complete flux determination is in principle contained in the data set.
However, from a statistical viewpoint this information is not sufficient to estimate glyxch[0,1]� and
glyxch[0,1]� with good statistical quality.

Finally, it is of some interest to find out which measured values influence the estimates of
those fluxes with the largest confidence intervals. A closer look at the parameter sensitivity
matrix computed by Equation (23) (not shown here) reveals that glyxch[0,1]� and pppnet� are both
strongly influenced by p5p _ � gap � � gap _ while glyxch� and acxch[0,1] are both influenced by gap _ � gap� � lys Û .
Moreover, the respective sensitivities are almost linearly dependent which explains the high cor-
relations. Finally, the occurring parameter sensitivities with respect to the pentose-phosphate
label stress the importance of measuring these pools.

Error analysis

An in-depth analysis of the discrepancy between the flux and labelling state predicted by the
model and the measured values (i.e. the residuals) would exceed the scope of this contribution.
However, all methods developed for linear models [van Heijden (1994a), van Heijden (1994b)]
are applicable. Only a short discussion of the most important facts is given here. Other statistical
methods (e.g. for testing model validity or finding gross measurement errors) would exceed the
scope of this contribution (see [Wang (1983), Vallino (1991), van Heijden (1994a), van Heijden (1994b)]).

As a fact, the
� _ test for the goodness of fit [Pázman (1993)] fails (as is nearly always the

case for biological experiments). The computed sum of squares is 137 while 25 is tolerable for
90% confidence (with 40-23=17 degrees of freedom). The reason might be a wrong model struc-
ture, a badly quantitated measurement error or gross measurement errors [van Heijden (1994a),
Wiechert (1995c)]. Tables I and II show that by far the major contribution to the sum of squares
is given by the deviations of lys � (46.0), akg _ (25.1), co2 � (17.3), akg e (8.7), akg � (7.7) and lys Ü
(7.2). Omitting these values already would reduce the sum of squares to 25.0. Thus gross mea-
surement errors might be the case. On the other hand, the measurement standard deviations may
be given too optimistically. Doubling them would reduce the sum of squares by a factor of four
at the cost of doubled parameter confidence intervals.

In general the model fits much better in the glycolysis and pentose phosphate pathway than in
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the other sections of the metabolic network. Systematic measurement errors in the citric acid cy-
cle pools (in particular in the lysine and � -ketoglutarate labels) must therefore be sought. Indeed
these pools are strongly influenced by the glutamate pool which has an extremely high intracel-
lular concentration of approximately 160-200 mM [Schrumpf (1995)]. Thus the duration of the
experiment has to be sufficiently long to compensate the labelling capacity effects of this pool
(see [Wiechert (1995c), Wiechert (1996a)] for an in-depth discussion of this problem). An im-
mediate consequence of this observation is that in the future carbon labelling experiments with
Corynebacterium glutamicum will be extended to 5 cell residence times in the bioreactor. In-
deed the fit for a recently performed sequel experiment that will be published elsewhere passed
the

� _ test.

Discussion and Conclusions

The importance of bidirectional fluxes

The key concept of exchange fluxes has already been stressed in Part I. From the achieved ex-
perimental results another example of the influence of bidirectional reaction steps can now be
given. In most previous investigations bidirectional reaction steps could not be considered to a
large extent because little labelling data was available. In particular the glycolysis and pentose
phosphate pathway reactions have been frequently assumed to be unidirectional [Portais (1993),
Sharfstein (1994), Rollin (1995)]. In this situation glycolysis and the pentose phosphate path-
way can be essentially reduced to two parallel reaction steps

Gly: 3 Glu � 6 Pyr
PPP: 3 Glu � 5 GAP + 3 CO2

.

with net fluxes glynet � glynet� *5Ý and pppnet � pppnet� *5Ý . As can be easily shown the ratio of these
fluxes can then be simply calculated from gap� by using the formula:

pppnet�
glynet� � Ý �oÞ gap �ß

gap �
Including the biomass effluxes and the natural

���
C enrichment of 1.13% results in a more com-

plicated formula (not given here) but does not lead to significantly different results. From this
extended formula and the measured data (Table II) we calculate pppnet� * glynet� � � . 
 with a 90
% confidence interval of à9á¸â . This is a significant difference of 200 % to the flux ratio of 2.0
computed from Figure 3b!

Thus, if no further measurement data would be available the simplified view would produce
wrong but statistically well determined results! Of course if the whole data set is used to fit the
simplified model it turns out that the unidirectional model cannot explain the measured pentose
phosphate pathway labelling. This illustrates how the availability of redundant measurement
data enables the validity of a given model to be tested. The example stresses once more that
bidirectional reaction steps are a key concept for the evaluation of carbon labelling experiments.
Significantly biased results will be produced if they are not considered.

Flux estimation from labelling data

This contribution proves that the carbon labelling technique enables all stationary net fluxes in
a complex reaction network to be quantified and at the same time also the order of magnitude of
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most exchange fluxes. To this end, the availability of a large amount of high-precision fractional
labelling measurements is of great importance for estimating all parameters with reasonably
small confidence intervals. No assumptions about the stoichiometry of the energy metabolism
were required for flux determination. On the contrary, such parameters can now be derived from
the estimated fluxes.

On the other hand, due to the inherent non-linearities of the carbon label flux balance equa-
tions the determination and statistical analysis of flux estimates requires highly sophisticated
mathematical tools that exploit the special structure of such systems. Only the parameter-fitting
approach is currently suited for evaluating such complex data sets while explicit calculations and
graphical displays are only applicable to certain subproblems.

The required numerical methods for treating the non-linear problems have been developed in
this contribution and successfully applied to a complex experimental data set. The numerical and
statistical problems arising have been exposed and appropriately solved. All algorithms have
been implemented within a flexible software framework for flux analysis. Because all those tools
are available now, flux estimation from carbon labelling experiments has reached the same state
of maturity as metabolite flux balancing from a computational and statistical viewpoint.

Further work

This contribution focused on the estimation of confidence intervals and the analysis of the co-
variance matrix for the estimated parameters while other tools of regression analysis were only
briefly discussed. Clearly, all established linear methods for identifying gross measurement or
modelling errors [Wang (1983), Chatterjee (1988), van Heijden (1994a), van Heijden (1994b)]
can be readily extended to carbon labelling systems because our statistical analysis is essentially
based on a special linearizing transformation.

Another question of great practical interest is that of choosing an input substrate (or even
a mixture of differently labelled substrates) that maximizes the obtained information about the
intracellular fluxes. This typical problem of optimal experimental design is usually solved on
the basis of the covariance matrix Cov ~Ã [Pázman (1986)]. Further work will concentrate on an
improved estimation of the pentose phosphate pathway influx pppnet� and the glycolysis exchange
fluxes glyxch[0,1]� � glyxch[0,1]� .

A problem that has not yet been extensively treated is the fine-tuning of the transformation
parameter

)
in Equation (2) that influences the goodness of the linearization approximation for

the exact confidence intervals. Although this approximation turned out to be rather insensitive
with respect to

)
we are developing a numerical method for an optimal a posteriori choice of

this constant.
Finally, a source of information that has not been used in this framework is isotopomer mea-

surements [Wiechert (1995c), Wiechert (1996a)] that can be easily obtained with the experimen-
tal technique presented in [Marx (1996)]. For a given network this leads to a much larger amount
of measurement data while leaving the number of parameters in the system unchanged. It was
shown in [Wiechert (1996a)] that isotopomer measurements have the potential for identifying
even more fluxes in metabolic networks. Fortunately, the framework presented above can be
readily extended to isotopomer networks using the concepts and algorithms presented in [Wiechert (1995c)].
To this end only one higher order term has to be added to the carbon labelling Equations (3).

A further question that is of great interest for the mechanistic modelling of metabolic net-
works using concepts from enzyme kinetics is the significance of exchange fluxes for the reg-
ulation of metabolism. In particular the question has to be answered whether a large exchange
flux permits one to an enzymatic step as non-rate-controlling.
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Appendix A: Network Structure of Corynebacterium glutam-
icum

The carbon atom transitions of the metabolic network shown in Figure 3 are subsequently given.
The trivial transitions of biomass effluxes are not given here (cf. Table I). Using the formal no-
tation introduced in the appendix of Part I the remaining reaction steps are:

Upt : Glu + GAP ã G6P + PYR
#ABCDEF + #abc ã #ABCDEF + #abc

Gly1 : F6P ã G6P
#ABCDEF ã #ABCDEF

Gly2 : G6P ã GAP + GAP
#ABCDEF ã #CBA + #DEF

Gly3 : GAP ã Pyr
#ABC ã #ABC

PPP1 : G6P ã CO2 + P5P
#ABCDEF ã #A + #BCDEF

PPP2 : P5P + P5P ã S7P + GAP
#ABCDE + #abcde ã #ABabcde + #CDE

PPP3 : GAP + S7P ã E4P + F6P
#ABC + #abcdefg ã #defg + #abcABC

PPP4 : P5P + E4P ã GAP + F6P
#ABCDE + #abcd ã #CDE + #ABabcd

CAC1: Pyr + OAA ã ICit + CO2
#abc + #ABCD ã #DCBAcb + #a

CAC2: ICit ã AKG + CO2
#ABCDEF ã #ABCEF + #D

CAC3: AKG ã Fum + CO2
#ABCDE ã #BCDE + #A

CAC4A: Fum ã OAA
#ABCD ã #ABCD

CAC4B: Fum ã OAA
#ABCD ã #DCBA

GC1: ICit ã GlyOx + Fum
#ABCDEF ã #AB + #CDEF

GC2: GlyOx + AcCoA ã OAA
#AB + #ab ã #ABba

AC: PYR + CO2 ã OAA
#ABC + #a ã #ABCa

LP1A: OAA + Pyr ã Lys + CO2
#ABCD + #abc ã #ABCDcb + #a

LP1B: OAA + Pyr ã Lys + CO2
#ABCD + #abc ã #abcDCB + #A

LP2: OAA + Pyr ã Lys + CO2
#ABCD + #abc ã #ABCDcb + #a

Those steps that are assumed to be unidirectional can be taken from Figure 3. Complete
scrambling was assumed for the fumarase reactions CAC4A and CAC4B and lycine production
via the succ-dap pathway (LP1A and LP1B).
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Appendix B: Computational Details

All computational methods in this contribution have been implemented within a universal soft-
ware framework for flux analysis written in C++ [Wiechert (1994)]. Its first component is the
textual input compiler described in the appendix of Part I. For incorporating measured data, this
textual input format has been appropriately augmented. In this appendix some technical details
on the implemented algorithms for simulation and computation of the flux estimates are given.
More information on the programs can be obtained from the authors.

Solving the model equations

The linear constraint Equations (6) are treated by using a numerically stable singular value de-
composition. Clearly, this has to be done only once for a given model structure. When incon-
sistencies or indeterminacies occur in the constraint equations this can be immediately detected
from the singular values [Press (1988)]. It has not been attempted to automate the finding of
free fluxes because according to experience the program user usually has has a suitable intuitive
suggestion (see the choice of free fluxes in the examples).

Solving the carbon isotope Equations (3) is substantially more complicated because this has
to be done in each iteration step of the parameter-fitting algorithm. Unfortunately, it can be
proven that the system matrix " f 2 � �2 
54 �2 6 f 2 � �2 
54 �2 � becomes more and more ill condi-
tioned when exchange fluxes tend to infinity (i.e. � xch[0,1]

2 � � ). It was explained in Part I that
this situation may well be expected and data analysis for other experiments showed that this re-
ally happens. Due to the poor condition neither QR decomposition [Horn (1985)] nor iterative
methods (like the Gauss Seidel iteration [Hackbusch (1993)] suggested in [Zupke (1994)]) are
then appropriate.

We solved the problem by an appropriate preconditioning of the system matrix using an idea
introduced in [Schuster (1992)]. Moreover, this technique is also used for solving the equations
“at infinity”. This mathematically rather involved technique would exceed the scope of this con-
tribution. More details can be taken from [Wiechert (1995c), Siefke (1996)]. After precondi-
tioning both QR decomposition and iterative methods are applicable. While QR decomposition
turned out to be much faster for the initial computation step of a parameter-fitting run, an itera-
tive refinement requires only a few steps when flux parameters are only slightly changed in the
course of the optimization run. Exploiting the sparsity of the occurring matrices led to a fur-
ther speed up of the iterative solution. For these reasons the solution algorithm is automatically
switched within our implementation based on a cost estimation.

Differentiating the model equations

The key to fast parameter-fitting algorithms as well as linearized statistical analysis is the effi-
cient computation of the model’s Jacobian matrix, i.e.

� Å * � Ã " ~Ãn� . According to Equation (20)
this means the derivation of ª « 
 � Q � [0,1]' Q \ " Ã9� and ª ¬ 
,W Q � Q � [0,1]' Q \ " Ã9� with respect toÃ . Clearly this can be achieved by applying the chain rule. While most incorporated derivatives
are computed straightforwardly, the derivation of W is obtained by implicit differentiation from
Equation (8) as:� �� � �ä � � /1032 � �2 
54 �2 6 032 � �2 
54 �2Ê8 P � 
 " 4 �ä 
�� 6 4 inpä 
�� inp �
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� �� � �ä � � /1032 � �2 
54 �2�6 032 � �2 
54 �2Ê8 P � 
J4 �ä 
��
This shows that W as well as its Jacobian can be computed using the same matrix factorization
(cf. Equation 8). Thus the computing time for the derivatives is almost negligible.

As is the case for the solution of the model equations, the sketched procedure for comput-
ing

� Å * � Ã " ~Ãn� is not applicable when large or even infinite exchange fluxes occur because the
system matrix will then become ill conditioned. Again a specially implemented preconditioner
solves the problem but cannot be explained here in detail (see [Wiechert (1995c), Siefke (1996)]).

Handling non-differentiable terms

The reader may have recognized that the transformation
�

in Equation (1) is not differentiable
everywhere because terms of type c xch �����? n"�c � � c � � are involved which are not differentiable
for c � �Rc � . This merely technical problem can be resolved by a differentiable approximation
of the minimum function. The key idea is that�å�? #"dc � � c � � � �á 
 "�c � 6 c � � � c � �Dc � ��� .
Now the absolute value � c � �Dc � � can be differentiably approximated by� c � �Dc � � ��æ "�c � �Ôc � � _ � æ "�c � �Dc � � _ 6Dç _
with a smoothing parameter

ç
. For

ç � 

the approximation error becomes arbitrarily small.

For parameter estimation the minimum function is replaced by its approximation with a rea-
sonably small

ç
. The resulting flux estimate will be biased as an effect of the approximation.

However, this first guess will be sufficient for determining at least the sign of the involved net
fluxes. Knowing these signs the flux directions can be fixed by adding the constraints � net

2 T 

or � net

2 � 

to the inequalities (7). Afterwards

ç
can be set to



so that the non-differentiable

points are removed from the set of feasible fluxes. The optimization algorithm described below
will then experience no difficulties.

Non-linear minimization algorithm

The non-linear constrained least squares problem (18) is numerically solved by using a hybridiza-
tion of the Levenberg-Marquardt approach for unconstrained parameter-fitting and the Sequen-
tial Quadratic Programming (SQP) approach for general constrained optimization [Fletcher (1987),
Boggs (1995)]. The key idea of the SQP algorithm is to replace the optimization problem locally
by its second order Taylor approximation. With the Gauss-Newton approximation of the Hes-
sian as used in the Levenberg Marquardt algorithm [Fletcher (1987)] the approximative problem
around an initial guess Ã for the true minimum is

minimize ¹ "�§ ÃÊ� � �!� Å " Ã9� 6(è&éè Ì " Ã9��
 § Ã � Ä��?� _·
subject to the constraints ÈÕ
 " Ã 6 § Ã9� T É .

This quadratic problem is solved using a numerically stable code [Goldfarb (1983)] to obtain
the constrained minimum § Ã . Then Ã 6 § Ã is taken as the new guess which gives rise to an
iterative algorithm.
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Another key idea of the Levenberg-Marquardt algorithm is the maintenance of an elliptical
trust region to prevent § Ã from becoming too large, which would result in an inadmissible Tay-
lor extrapolation [More (1983)]. This trust region approach is carried over to the hybrid code by
replacing the elliptical region by a rectangular region which can be expressed by another set of
linear inequality constraints. The details would exceed the scope of this contribution. The reader
is referred to [Wiechert (1995c), Siefke (1996)].

As is the case with unconstrained optimization, the SQP algorithm converges to a local opti-
mum which can be checked by verifying the so-called second order sufficient conditions [Boggs (1995)].
Restarting the algorithm with different starting values helps to ensure that the global optimum
has been found.

Statistical treatment of active inequality constraints

As was demonstrated in Part I the inequality constraints in the nonlinear statistical model of
Equation (22) must be strictly obeyed by the optimization procedure to obtain meaningful re-
sults. The reason for this is that due to measurement errors the measured labels ¯ may be out-
side the accessible labelling states of the system (see Figure 1a). In this situation the computed
estimator runs to the boundary of the feasible region Èê
CÃ T É from Equation (21).

In the situation, where ~Ã lies on the boundary of the feasible region ÈÕ
CÃ T É the compu-
tation of statistical quality measures for ~Ã is a delicate problem that is currently not adequately
covered by statistical theory. A first practical approach for treating this problem is now outlined.
Assume for simplicity that only one constraint is given, i.e. È is a transposed vector. In most
cases this equation will be of type � xch[0,1]ä � 


or � xch[0,1]ä � � . Now consider the situation where
the parameter-fitting algorithm has run to the corresponding boundary plane, i.e. ÈÕ
CÃ � É .

In this situation it is advisable to take this equation for granted, i.e. the inequality constraint
is a posteriori replaced by the equality Èë
�Ã � É . This equation can then also be included within
the equality constraints section of the model (i.e. Equation (6)) from the very start. Clearly this
reduces the degree of freedom by one but the problem reduced in this way has exactly the same
flux solutions as the original problem.

This a posteriori procedure makes it possible to remove those inequality constraints that have
become active. Since all the others pose no problem the inequality constraints Èì
&Ã T É can be
completely removed a posteriori from the problem formulation. Of course, this ad hoc procedure
deserves further statistical research which is currently going on. In particular the significance
of a constraint to be active should be statistically tested. This would exceed the scope of this
contribution (see [Wiechert (1995c)] for more details). Fortunately, active inequality constraints
did not occur in the presented application example (although we frequently encountered them
with other experimental data sets).
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Figures and Tables

A high quality camera ready copy of all Figures and Tables is attached seperately.
All Figures are magnified by 200 %. The 100 % sized figures will fit exactly into
one column of “Biotechnology & Bioengineering”.
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Table I: Measured and estimated extracellular fluxes in C. glutamicum MH20-22B under lysine
producing conditions. All values are scaled to a substrate uptake rate of 100 % corresponding
to 1.49 mmol/(gTM 
 h). The biomass effluxes pyreffl _ , e4peffl and lyseffl � are coupled to CO _
formation while p5peffl � and p5peffl _ refixate CO _ . The flux symbols can be taken from Figure
3a. All measuring errors were taken to be 2% except for CO _ with 5%. The right column shows
the corresponding weighted deviation.

Table II: Measured and estimated fractional labels with assumed measurement errors depend-
ing on the quality of the corresponding NMR spectrum. The metabolite symbols can be taken
from Figure 3a. Labelled CO _ was measured by mass spectrometry. The right column shows
the corresponding weighted deviation.

Table III: Estimated values and 90% unsymmetric confidence intervals for the estimated free
fluxes.

Table IV: The longest principal axes of the 1 � -confidence ellipsoid. Only the largest entries are
reproduced.
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Flux Measured Estimated Assumed Weighted
value value standard deviation

[%] [%] error
Substrate uptake:
upt 100.0 98.7 2.000 -0.63
Biomass effluxes:
g6peffl 1.3 1.3 0.026 0.04
f6peffl 0.5 0.5 0.010 0.01
gapeffl 0.9 0.9 0.018 0.02
pyreffl � 18.0 18.0 0.360 0.37
pyreffl _ 23.0 23.1 0.460 0.15
e4peffl 1.8 1.8 0.036 0.06
p5peffl � 1.0 1.0 0.020 0.05
p5peffl _ 4.9 4.9 0.098 0.21
akgeffl � 7.0 7.0 0.140 0.07
akgeffl _ 1.2 1.2 0.024 0.01
oaaeffl 11.6 11.6 0.232 0.17
Product formation:
lyseffl 18.3 18.5 0.370 0.40
co2effl 275.1 239.0 13.800 -2.62

Table
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Carbon Measured Estimated Assumed Weighted
atom value Value standard deviation

[%] [%] error
p5p � 12.6 12.5 0.2 -0.14
p5p _ 2.9 2.8 0.5 -0.28
p5p� 2.1 2.3 2.0 0.11
p5pe 1.5 2.1 0.5 1.28
p5p Ü 19.3 18.4 1.3 -0.67
e4p � 2.0 3.0 1.0 1.01
e4p _ 3.6 2.1 1.0 -1.49
e4p� 2.0 1.9 1.0 -0.08
e4pe 16.7 15.5 2.0 -0.59
gap � 2.9 2.9 0.2 -0.11
gap _ 2.6 2.5 0.1 -0.60
gap� 26.7 26.4 0.2 -1.65
pyr _ 3.0 2.7 1.0 -0.33
pyr � 26.4 26.3 0.5 -0.20
akg _ 24.1 22.5 0.3 -5.10
akg� 11.1 9.7 0.5 -2.78
akge 28.1 26.3 0.6 -2.95
oaa _ 7.6 9.7 2.0 1.05
oaa� 20.9 22.5 2.0 0.81
oaae 16.8 17.3 2.7 0.17
lys _ 6.8 7.1 0.2 1.36
lys � 21.9 23.9 0.3 6.78
lys e 18.9 17.3 1.0 -1.63
lys Ü 22.2 24.9 1.0 2.69
lys Û 5.6 5.3 0.3 -1.00
co2 � 23.0 21.6 0.4 -4.16

Table
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Table

Flux Estimated Estimated 90%
value confidence

[%] interval
pppnet� 65.3 [ 53 , 78 ]
gcnet� 1.2 [ 0 , 5 ]
lpnet_ 4.7 [ 3 , 6 ]
glyxch� 313.2 [ 59 , � ]
glyxch� 14.5 [ 0 , 77 ]
pppxch_ 84.2 [ 51 , 137 ]
pppxch� 5.7 [ 0 , 18 ]
pppxche 11.0 [ 4 , 19 ]
acxch 30.4 [ 14 , 53 ]
cacxche 3.2 [ 0 , 15 ]
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Figure 1: Comparison of different approximations for the exact 90 % confidence region of"�c net_ � c xch_ � in the example network from Part I (compare to Figure 2b in Part I): a) six 90 % confi-
dence regions in the "�^ � �&a � � plane assuming a measurement error of 0.008 (cf. Figure 2a in Part
I). b) the corresponding exact non-linear 90 % confidence regions obtained from the non-linear
mapping of the original circles via { P � Q q P � . c) linearized elliptical 90 % confidence regions
obtained from a linearization of { P � Q q P � in the "�c net_ � c xch_ � space compared to the exact regions.
d) approximated 90 % confidence regions obtained from a linearization of "�{ [0,1]' � P � Q { P � Q q P �
in the "dc net_ � c xch[0,1]_ � space and subsequent back-transformation into the "�c net_ � c xch_ � coordinate
system via { [0,1]' .

Figure 2: Behaviour of the example system’s labelling state a � for fixed net flux c net_ and a) in-
creasing c xch_ , b) increasing c xch[0,1]_ . For each case tangent lines and 90 % measurement confi-
dence intervals corresponding to a measurement standard deviation of 0.008 are drawn for small,
intermediate and large exchange values. The much lower curvature is apparent from b).

Figure 3: Network model for the central metabolism for Corynebacterium glutamicum: a) cho-
sen flux names and free net fluxes (shaded), b) determined net fluxes (boxes with corners) and
exchange fluxes (boxes with rounded corners) based on the data of Tables and . Biomass and
CO _ effluxes (except for the ppp � step) are not shown for simplicity. Confidence intervals for
the flux estimates as given in Table show that the glycolysis exchange fluxes are rather undeter-
mined. i.e. these values should be taken with care.
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Figure 2
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Figure 3a
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Figure 3b
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