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Abstract: The last few years have brought tremendous progress in experimental methods for metabolic flux de-
termination by carbon labeling experiments. A significant enlargement of the available measurement data set has
been achieved especially when isotopomer fractions within intracellular metabolite pools are quantitated. This
information can be used to improve the statistical quality of flux estimates. Furthermore, several assumptions on
bidirectional intracellular reaction steps that were hitherto indispensable may now become obsolete. In order to
make full use of the complete measurement information a general mathematical model for isotopomer systems
is established in this contribution. Then by introducing the important new concept of cumomers and cumomer
fractions it is shown that the arising nonlinear isotopomer balance equations can always be analytically solved. In
particular the solution of the the metabolite flux balances and the positional carbon labeling balances presented in
Part | of this series turn out to be just the first two steps of the general solution procedure for isotopomer balances.
A detailed analysis of the isotopomer network structure then opens up new insights into the intrinsic structure
of isotopomer systems. In particular it turns out that isotopomer systems are not as complex as they appear at
first glance. This enables some far-reaching conclusions to be drawn on the information potential of isotopomer
experiments with respect to flux identification. Finally, some illustrative examples are discussed to show that an in-
formation increase is not guaranteed when isotopomer measurements are used in addition to positional enrichment
data.

Keywords. metabolic flux analysis, 13C isotope labeling experiments, isotopomers, cumomers, network analysis,
parameter identifiability



1 Introduction

Parts | and Il of this series (Wiechert & de Graaf, 1997; Wiechert et al., 1997a) (henceforth simply called Parts
I and I1) dealt with modeling, simulation and statistical data analysis for positional carbon labeling experiments.
This theoretical development was driven by the necessity to quantitate bidirectional reaction steps in the metabolic
network, in order to attain an accurate, comprehensive flux analysis based on 2C labeling experiments. While an
optimized analysis was indeed established, it was shown that the evaluation of labeling experiments must always
rely on certain assumptions on bidirectional fluxes because the amount of measurement information available from
positional 12C labelings is generally not sufficient.

1.1 Isotopomers

Isotopomer analysis has the potential to solve this problem. Considering only the '2C and '3C isotopes in the
carbon backbone of a molecule M with n carbon atoms an isotopomer of M is one of the 2 ™ possible labeling states
in which this molecule can be encountered (Fig. 1) (Malloy et al., 1988). The corresponding isotopomer fraction
denotes the percentage of molecules in this specific labeling state. The positional enrichment at the ith carbon
atom M#i within a metabolite M (as treated in Parts | and I1) is then the sum of all isotopomer fractions of M where
the ith carbon atom is labeled (Fig. 1). An important difference between the two concepts is that the isotopomer
fractions of M always sum up to 100 % while positional labeling fractions have no such constraint.

If all isotopomer fractions of a metabolite with n carbon atoms can be measured instead of only positional
enrichments an increase from n measured positional enrichments to a maximum of 2" — 1 measured isotopomer
fractions is achieved (the 2™th measurement is redundant due to the 100 % constraint). For certain metabolites like
sedoheptulose-7-phosphate this will yield a maximal information increase by a factor of 127/7 ~ 18. Although
this factor cannot be reached in practice this illustrates the tremendous potential of isotopomer measurements for
flux quantitation compared to positional measurements.

Clearly, by measuring isotopomers one expects an improvement of statistical quality for the flux estimates due
to the much higher amount of measured data. Moreover, assumptions about the biochemistry may be dropped.
Therefore, the availability of a unifying mathematical modeling framework for both positional labelings and iso-
topomer distributions would be invaluable.

1.2 Available measurement data

Carrying out an isotopomer labeling experiment only makes sense if powerful methods for measuring isotopomer
fractions are available and the number and quality of measured values is significantly higher than that of posi-
tional labeling data. Fortunately, due to recent experimental progress, these requirements are now met and the
corresponding measurement techniques are well developed.

An early application of isotopomer measurements for in vivo flux determination is given by (Malloy et al.,
1988) where whole animal hearts were studied inside an NMR instrument. This only enabled a single intracellular
pool (glutamate) to be observed. Later a series of applications for different systems was reported using NMR
(Kinnecke et al., 1993; Lapidot & Gopher, 1994) as well as mass spectrometry (MS) (Katz et al., 1993; Donato
et al., 1993). In each case only a few measurements were obtained.

This situation has been dramatically changed by recent developments. The most important change is that with
the experimental technique of preparing proteinogenic amino acids as introduced in (Marx et al., 1996) the labeling
state of many intracellular pools can now be indirectly measured using a retrobiosynthetic approach (Szyperski,
1995). Additionally, since the measurement is performed separately from the actual labeling experiment a high
precision can be achieved. This enables 1-dimensional 'H- and 13C-NMR, 2- dimensional 1H-13C-NMR and MS
to be applied for isotopomer quantitation yielding a large variety of different measurement data that are directly
related to isotopomer fractions. The present situation is reviewed in (Wiechert & de Graaf, 1996; Szyperski, 1998).

More details concerning the different measurement techniques for isotopomers and their modeling will be
presented in Part 1V of this series. The only basic fact that is important for the understanding of the following is
that, in general, the described methods do not enable isotopomer fractions to be directly measured. Instead they
all essentially produce linear combinations of such fractions (up to a scaling factor that will be discussed in Part
IV). For example, with proton NMR all isotopomers that are labeled on a certain carbon atom position produce
the same spectral peak. Likewise an MS measurement peak is (up to a certain isotope effect correction) produced
by all isotopomers with the same molecular weight, i.e. the same number of labeled carbon positions. These are
also called mass isotopomers (Lee et al., 1991). Henceforth the term isotopomer measurement is used for any
measurable linear combination of isotopomer fractions.

1.3 Modeling, simulation and data analysis frameworks

In order to evaluate isotopomer labeling experiments mathematical models are required. The basic principles
of isotopomer balancing were first presented in (Jeffrey et al., 1991; Kiinnecke et al., 1993). Since one balance



equation has to be given for each isotopomer fraction in the system this ends up with about 500 and more equations
for the central metabolism. About 65% of the equations are required for glycolysis and the pentose phosphate
pathway. For instance 128 equations must be formulated for the sedoheptulose-7-phosphate pool alone! Since
previous applications concentrated only on metabolic subsections like the citric acid cycle the number of equations
considered has not been that high until now.

Those cases where only part of the isotopomer balances was exploited yielded highly application-specific
formulas that cannot be easily generalized to arbitrary networks with less strict assumptions on bidirectionality or
differently labeled substrates (Malloy et al., 1988; Lee, 1993; Szyperski, 1995; Klapa et al., 1999). Moreover, such
explicit formulas for flux determination do not exploit all the available measurement information, i.e. the statistical
quality of the estimated fluxes cannot be improved from redundant data. For this reason all interdependences
between fluxes and measurements have to be represented in the model which means that the complete balances
must be incorporated in a holistic manner (Schmidt et al., 1997).

Clearly, a manual input of the balance equations is ruled out because this is extremely time- consuming and will
almost certainly produce typing errors. For this reason a general mathematical modeling framework accompanied
by the appropriate tools for automatic model generation, simulation, parameter estimation and statistical analysis
is required, as has been established in Parts I and |1 for the case of positional labeling systems. For isotopomer
systems only parts of such a general framework are currently available (Schmidt et al., 1997).

As was the case with positional carbon labeling, there are basically two formal approaches for establishing
a general model structure. The mapping matrix approach recently presented by (Schmidt et al., 1997) gener-
alizes (Zupke & Stephanopoulos, 1994), while the transition matrix approach from (Wiechert, 1996) generalizes
(Wiechert & de Graaf, 1997). Of course both approaches are equivalent but use different notations. Mapping matri-
ces describing single reaction steps can be easily used for a quick model implementation using a computer algebra
system like MAPLE or a numerical analysis system like MATLAB. On the other hand transition matrices simul-
taneously describe the whole reaction network and thus are much more suitable for establishing high-performance
numerical algorithms and for doing system analysis. In each case the mapping or transition matrices can be auto-
matically generated so that the user is not aware of the technical details of model generation (Schmidt et al., 1997;
Mollney et al., 1999).

Given the model equations, several simulation algorithms for general isotopomer labeling systems have been
presented. Because isotopomer balance equations are nonlinear, iterative procedures have been used in the past
like a modified Euler algorithm (Wiechert, 1996), a modified Jacobi iteration scheme (Schmidt et al., 1997) or
a Newton formula (Wiechert et al., 1997b). In each case the presence of large exchange fluxes causes severe
instability or convergence problems for each of these algorithms (Wurzel, 1997) which is not surprising because
the positional carbon labeling system is known to be ill-conditioned in that case (Wiechert, 1996; Siefke, 1996).
Thus more sophisticated algorithms are needed to establish a generally applicable solution.

1.4 Aims of this contribution

The aim of this contribution and its sequel is the generalization of all models, methods and tools introduced in
Parts | and Il to general isotopomer systems. In particular Part 111 covers the following subjects:

1. The isotopomer balance equations are generally expressed by introducing transition matrices and the soft-
ware tools for the automatic generation of these complex matrices are supplied.

2. Although the contrary was recently conjectured in (Klapa et al., 1999; Park et al., 1997) it is shown that the
nonlinear isotopomer balances can always be analytically solved and an appropriate solution algorithm based
on matrix calculus is presented. To this end the important concept of cumomers and cumomer fractions is
introduced.

3. The solution algorithm for the isotopomer balances also has a great impact on flux identifiability analysis.
For this purpose the concept of cumomer redundancy and the new method of cumomer network analysis is
introduced. It represents a powerful tool to gain insight into the information which can be obtained from
isotopomer experiments.

4. Some instructive examples will be studied using the newly developed tools. It appears that isotopomer
networks are not as complex as suggested by their large dimensionality. Some far-reaching conclusions can
be drawn on the identifiability of fluxes and the improvement to be achieved by using isotopomer data.

The statistical analysis of isotopomer experiments and their comparison with positional labeling experiments is
carried out in Part V. This will enable the different methods that are currently being promoted to be compared on
the basis of quantitative criteria.



2 |sotopomer Labeling Balances

The principles of formulating isotopomer labeling balances are now briefly presented by using a simple example.
This example will then be used throughout the following chapters to introduce the concept of cumomer fractions
and to relate them to the isotopomer fractions.

21 Asimpleexample

The example network with its metabolite fluxes and carbon atom transitions is given in Figure 2. It is modeled
on the citric acid cycle together with the anaplerotic reaction section but is simplified to a few metabolites with
a maximum of 4 carbon atoms. Using the formal notation for carbon atom transitions introduced in Part | the
network has the following structure:

vli: A > B v5: B > K
#Xy > #HXy #xy > #xy
v2: B > E v6: C > D + F
#xy > H#HXy #uvxy > #Hvxy + #u
v3: B + E > C v7: D > E + G
#Xy + #uv > #xyuv #uxy > #ux + #Hy
vd: E > H
#xy > H#HXy

Flux v1 is an input flux and thus assumed unidirectional (i.e. vi~ = 0). The reason for this directionality
convention is that a backflux in v1 would have no effect on the intracellular labelling state (cf. Part I). The fluxes
v4, v5, v6, v7 are output fluxes. If one of these fluxes would have a backflux another labeling source from the cell
surrounding would have to be introduced into the network. By convention (cf. Part I) such an input is only allowed
as a dedicated system influx. Because such an additional input is not assumed in the example the output fluxes are
also unidirectional (i.e. v~ = v = v§” = v¥ = 0). The remaining intracellular fluxes v2, v3 are assumed to
take place in both directions. This yields the flux balances:

B: v +vi +v5 = vy +v3 +o5”
. — — — —

C: v = vy +ug )
D: wg = vy

E: vy’ +v5 vy = vy +v3 +ug

Choosing vy, vy”, v3~, v3”, vi~ as the free fluxes the remaining fluxes are expressed as:

vg =vr = vs' = v3

vy’ = vy’ —v§ )
vy’ = o +vs —vy+vi — g

2.2 |sotopomer fractions

The isotopomers of a metabolite M are denoted by using an obvious binary notation as M#abc... with a,b,c,...=
0 or 1. Here a 1 indicates that the corresponding carbon atom position is labeled and a O indicates that it is not
labeled. For example C#0101 denotes the isotopomer of C which is labeled at the second and fourth position.
The state variables usually used for the description of the system’s isotopomer labeling state are the isotopomer
fractions of all input and intracellular metabolites (see Fig. 1). For the input metabolite A this yields 22 = 4
variables and for the intracellular metabolites B, C, D, E this yields 22424423422 = 32 variables. The isotopomer
fractions of M are denoted by using an index notation corresponding to the isotopomer name as m qp..... For
example the iSOtOpomer fractions of D are written as dooo, doo1, do10, do11, d100, d101, d110, d111- IN the fOIIOWing
the isotopomer fractions will also be denoted with a more compact notation by using indices i, j, &k, € {0,1} as:

aij, bij, Cijrt, dijk, €ij, i,j,k,1=0,1

Clearly, the sum of all isotopomer fractions corresponding to one metabolite is 100%, i.e.

1 1 1 1 1
E a;; =1, E bij =1, E Cijrkl = 1, E dijr = 1, E e =1 . (3)
i,j=0 i,j=0 i, k=0 i, k=0 i,j=0



2.3 Balance equations

Assuming isotopic stationarity (Marx et al., 1996; Wiechert, 1996) a balance equation can now be formulated
for each of the 32 intracellular isotopomer pools as has been already described in (Wiechert & de Graaf, 1996;
Schmidt et al., 1997). As opposed to positional labeling systems, unimolecular and bimolecular reaction steps
must be treated separately. Furthermore a distinction must be made between bimolecularity on the educt side and
on the product side.

As an example of bimolecularity on the educt side the balance for the pool C#1001 is given by:

C#1001 : c1901 (U:i»_ + ’l}6_>) = big €o1 U3_) (4)

Here the effluxes are collected on the left side and the influxes are collected on the right side. The efflux is given by
the total amount of molecules carried out of the metabolite pool C by the fluxes v~ and vg” times the percentage
of the isotopomer considered (i.e. c1001). On the right-hand side a product of the isotopomer fractions b 1o and eg;
occurs because the target isotopomer is formed from two educt isotopomers. The product is the probability that
both educt isotopomers happen to be combined by the bimolecular reaction step v3.

The right side of Equation (4) is nonlinear with respect to the isotopomer fractions because the quadratic term
b1o ep1 occurs. This means that isotopomer balance equations cannot be simply written by using transition matrices
as in Part | and that they cannot be easily solved for the labeling variables when all fluxes are known. However,
such a quadratic term only occurs when a metabolite is formed in a bimolecular reaction step and in all other cases
the arising terms are linear as is shown below.

Another important difference between positional and isotopomer balances occurs when there is a bimolecular-
ity on the product side. When an educt metabolite is split into parts the product isotopomers (unlike carbon atoms)
can be obtained from more than one educt isotopomer. This is shown by the example:

B#10: bio (v3” +v3” +v5") = (1000 + Cro01 + C1o10 + C1011) V5 + Q1o v + €10 U5 5)

Here all educt isotopomers C#1000, C#1001, C#1010,C#1011 yield the same product B#10 in reaction step
v3.
A reaction step that is bimolecular on the educt and on the product side like e.g.

w.M+N>P+Q

can be easily reduced to the two cases discussed above by introducing an intermediate metabolite and splitting the
reaction into two steps:

wl: M+ N> MN w2: MN > P +Q

Finally, the balances for unidirectional reaction steps are obtained by the same principles as for positional
labeling systems. All balance equations are finally summarized by using indices 4, j, k,1 € {0, 1} in the compact
notation:

B#ij : b,‘j (U? + ’U? + U?) = (CijOO + Cijo1 + Cijio0 + Cijll) v§+aij U? + e;j U;

C#Ijk' Cijkl (U? + ’U(?) = bij (9] ’U?

D#ijk : dijr vy = (Coijr + Criji) Vg

E#ij ey (Ué_ + ’U; + U4_)) = (C()()ij + Co1ij + C10i5 + Cllij) ’U?()_-i—(d,'jo + d,‘jl) ’1}7_> + bij Uz_)
These 32 equations must be combined with Equation (3) so that there are finally more equations than fractional
variables. This is explained by a redundancy in the combined equation set (6) that is obtained by adding up all
balance equations corresponding to one metabolite. For instance all balances for the pool B add up to:

=1

(6)

—
1
} : — — -\
bij (UZ +U3 +’U5 ) =
i,j=0
1 1 1
— — —
E Co0ij + Co1ij + Cioij + Ci14j | vz + E a;j | v;” + E €ij | Vg
4,7=0 4,7=0 4,7=0
N -— ~ —_—— ———

=1 =1 =1

This is exactly the metabolite flux balance for pool B from Equation (1).

3 Cumomer Labeling Balances

At first glance there is no way to solve the isotopomer balance equations analytically due to their nonlinear structure
and high dimensionality. This has given rise to the different iterative numerical solution approaches mentioned
in the Introduction. Surprisingly, after a suitable variable transformation the equations can be always explicitly
solved. After transforming the equations they have a much simpler but still familiar structure.



3.1 Cumomer fractions

The transformed variables will be called cumomer fractions. The artificial word “cumomer fraction” is an ab-
breviation for “cumulated isotopomer fraction” and means a certain sum of isotopomer fractions of a metabolite.
Cumomer fractions are introduced by the running example for metabolite D. The so-called 0-cumomer fraction of
D is simply the sum of all its isotopomer fractions, i.e.

de
xmc :f Z dz]k =1 . (7)

i,7,k=0

Here the index x has the obvious meaning “0 or 1”. Using the same notational convention the 1-cumomer fractions
of D are obtained as:

1
def def def
dlzz i Z dljk; zla: i Z dllk7 1:3:1 é Z dz]l (8)

J,k=0 i,k=0 i,7=0

Thus the 1-cumomer fractions are the percentages of all isotopomers that are labeled at least at the single position
indicated by the index 1. Of course, these are exactly the familiar positional labeling fractions d | = dy .., d> =
dp1e, d3 = dzz1 introduced in Part 1.

Continuing the idea of cumulative isotopomer fractions the 2-cumomer fractions are formed from all iso-
topomers with at least two specified labeled carbon atoms as indicated by the index 1:

1
d
iy, § jdm, diot &S dij, denn § jdm 9)
P

Finally, there is the single 3-cumomer fraction d111 which is identical to the corresponding isotopomer fraction. It
is shown in Section "The General Model” that the linear transformation

(dooo s doo1, do1o, do11, d10o, d1o1, d110, d111) ¢ (dzezs deat, o1z, de11, d1zz, dig1, di1g, di11)

is always a one-to-one correspondence, i.e. the cumomer fractions can be calculated from the isotopomer fractions
and vice versa.

From now on the term cumomer is used to denote a “virtual molecule”, to which a cumomer fraction is assigned.
For example, the notation C#1xx1 is used for a cumomer and c1,,1 for the corresponding cumomer fraction.
Clearly, a cumomer is not a real particle but rather a set of different isotopomers. However, this terminology
makes it more convenient to talk about the cumomer balance equations introduced in the next section. In particular
a cumomer network can be constructed that is in the same relation to the cumomer balances as the isotopomer
network is to the isotopomer balances.

3.2 Balance equations

The cumomer balances are computed by transformation of the isotopomer balances. This is achieved by summing
up the equations of all isotopomers belonging to a certain cumomer. As an example, to obtain the cumomer balance
equation for the cumomer C#1xx1 the equations for the isotopomers C#1001, C#1011, C#1101 and C#1111
have to be summed up. The result is:

1 1 1 1
C#1xx1: Z C1ij1 (’U?()_ + UG_)) = Z bu €51 ’1}3_> = (Z b1i> Zeﬂ U3_) (10)
i,5=0 i,5=0 i=0 =0
—_———

=b1z =€zl

=Clz=zl
This shows that in the case of a bimolecular product the corresponding cumomer balances can be simply con-
structed from the isotopomer balances by replacing each index 0 in Equation (4) by x. This is not so simple for the

product of a splitting reaction step as can be observed for B#1x:

1
B#1x : <Z b1i> (v37 +v3” +v37) =

=bi1a
1 1 1
(Z C1io0 + C1io1 + Crito + Clill) vy + (Z ali) v’ + <Z €1i> V3 (11)
. i=0 | i=0 i=
:C:;mm =a1a =€1z

This is simply the carbon balance equation for B#1 written in an unfamiliar notation. But more important is the
fact that the original sum c¢19o0 + ¢1001 + ¢1010 + 1011 from Equation (5) is reduced to only one cumomer term
C1ezaz 1.€. the index replacement rule “0 — z” does not hold in this situation.



3.3 Weight preservation

To understand the general principle of cumomer balance formulation the key concept of the weight of each iso-
topomer or cumomer is defined. The weight of an isotopomer denotes the number of its labeled carbon atoms,
i.e. for example

weight (B#ij) = ¢+ j, weight (C#ijkl) =i+ j+k+1, weight(D#ijk) =i+ j+k

Likewise the weight of an n-cumomer is defined to be n, i.e. the weight of the isotopomer that is created by
replacing the letter X in the cumomer notation with 0. For example

weight (C#1XX1) = weight (C#1001) = 2

The term “weight” is also used for the corresponding labeling variables, i.e. b;;, ¢;jri, diji -
The general rule now becomes clear by observing that cumomer balances are always weight preserving. This
means that in the balance Equation (11) for the 1-cumomer B#1x all the involved labeling fractions a 1, b1z, C1zze, €12
correspond to cumomers with weight 1. The same rule applies for the 2-cumomer fraction C#1xx1 from Equation
(10), if the additional convention is made that the weight of a quadratic term is the sum of its factor weights. Thus
the quadratic term b1, e,; and the linear term ¢, both have weight 2 in Equation (10).
Weight preservation does not hold for the isotopomer balances. For example, the isotopomer fractions ¢ 1900, ¢1001, C10105 C1011
of weight 1, 2, 3 are all involved in the balance for B#10 from Equation (5). So the general procedure for converting
isotopomer into cumomer balances is as follows:

1. First replace each index 0 by z in all isotopomer balance equations.

2. Then remove all sum terms that are not weight-preserving. (12)

The correctness of these rules can be generally proven for arbitrary networks (Wurzel, 1997). The complete
cumomer balances for the running example can thus be compactly written by using indices ¢, j, k, ! € {z,1} as:

B#Ij : b,‘j (’1}2_> + U3_) + ’1}5_>) = Cijox U3<»_+G,,'j ’1}1_> + €ij ’1}5_

C#Ijk' Cijkl (’U? + U(?) = bij €kl U? (13)
D#Ijk dijk ’U? = Crijk U(?

E# : e; (v5 +vs +0)7) = Cazijvs +dijo v + b vy

The reader should verify these equations by comparison with Equation (6).

3.4 Solution of the example system

The cumomer labeling balances from Equation (13) turn out to be slightly simpler than the isotopomer balances
from Equation (6) because non-weight-preserving terms are omitted. This has dramatic consequences for the
solution of the equations because the cumomer balance equation for an n-cumomer can only contain cumomer
fractions with a weight less then or equal to n. Consequently, the cumomer balances are less strongly coupled than
the isotopomer balances.

The second important observation is that in an n-cumomer balance a fraction variable of weight less than n
can only occur as a factor of a bilinear term. In particular the factors of this term have either both weights less
than n or one weight is n and the other is 0. Since a 0-cumomer fraction has value 1 by definition the 0-cumomer
fractions can be left out so that only the n-cumomer factor remains. Consequently, the terms of weight n always
occur linearly in an n-cumomer balance equation. This is the key for solving them explicitly.

To demonstrate this by the running example a cascade of linear equations is constructed from which the 1-, 2-,
3-...cumomer fractions are successively computed. We start with the 0-cumomers. The corresponding equations
are from Equation (13):

B#xX : bi. (U7 + 113_> + ’U;) —Czzzz Ué_ —€zx Ué_ =0z Ul—>

CHXXXX: Cpzaw (V5 +v57) —baz €20 V3 =0 (14)
D#xXX : deze 1]7_> —Crzzx U6_> =0

E#xX : ess (U? + U;) + ’Ur) —Czzzzx Uf —dzax U’? —base U;) =0

Since all 0-cumomer fractions are 1 these are exactly the metabolite flux balances from Equation (1).
It is now continued with the 1-cumomer fractions which are exactly the positional carbon labeling equations
from Part I. Here all 1-cumomer terms have been arranged on the left side and the 0-cumomer fractions have been



eliminated. The known input cumomer fractions a 1., a1 can be found on the right side:

B#x1 : b.i (vz +v3 +v5) —CelexV3 —€x1 Vs =z v]
B#1X : bi ( Uy +U3 +U5 ) —Clzzx U:’t_ —Clz Ué_ =a1zx Ul_>
CHIXXX: Cigze (V5 +vg) —biz vz =
CHXIXX: Celza (v3 +vg") —bz1 w3 =0
CHxXXIX: cez1e (V5 +vg) —e1x U3 =0
CH#xxx1: Cozo1 (V3 + Vg ) —ez1 V3 =0 (15)
D#1XX : d1$£ 1)7_> —Czlzx U6_> =0
DHXIX : dp1r 7 —Cazlz Vg =0
D#XXL : dypp1 7 —Cazzl Vg =0
E#1x €l (Ué_ +U3_> +U:) —Cgzxlx U?t_ _dlxw U7_> _blw U; =0
E#x1 €xrl (’U; +U?+Ur) —Cgzzl /U;si _dfclz /U'? _bzl /U; =0

From this linear equation system the 1-cumomer fractions can be computed as a function of the free fluxes with
the help of a computer algebra system. The resulting lengthy formulas are not reproduced here for the sake of
brevity.

Going over to the 2-cumomer fractions, all 1-cumomer fractions can be assumed to be known and thus are put
on the right side:

— — —
B#11 : bii  (vy +v3 +v5) —Clize V5 —€11 Vs =ai v

CH11xx: ciizz (v +vg b1 vy =0

(

(vs” )
CH#HIXIX: ciz1z (V3 + vg) =biz 12 V3"
C#H1xx1: cizz1 (v5 + vg) =b1z ex1 3
CH#x11x: cpi1z (V5 +vg) =bg1 €12 V3"
CHXIXL: Cp1e1 (V5 4 vg7) =bs1 ec1 05" (16)
CH#xx11l: cpen1 (v3 + vg') —e11 vz =0
D#11X : di1. v7 —Cel1z Vg =0
D#1x1 : dla:l 117 —Cgzlzl U; =0
D#x11 : dz11 vy —Caz11 Vg =0
E#11 : enn (vs +v3 +vy) —Coziivs —diuzvy —buivy =0

Again the solution of this linear equation system is not given here for shortness.
There are only a few 3-cumomer equations because they can only occur in C and D:

C#111x: ci11z (U3 + vg ) =bi1 e1p Uf?
C#11x1: ci1z1 (U3 + vg ) =b11 €21 U;
CH#1x11: ciz11 (11 + vg ) =b1a €11 U? (17)
CH#X111: coinn (05 +vg) =bz1 €11 03"

D#111 : d111 U7 —Cgz111 Uf? =0
Finally, the only 4-cumomer fraction in the system is described by:

C#1111: ciin1 (Ué_ —+ U(?) = biien 1)3_> (18)

By successive substitution of the analytically computed 0,1, ..., n — 1-cumomer fractions a representation
of the n-cumomer fractions is obtained in terms of the known input cumomer fractions a ;; and the free fluxes.
From this the isotopomer fractions are computed by using the linear transformations from Equations (7-9). Thus
as a main result the cumomer and isotopomer fractions are always rational functions of the input fractions and
the free fluxes. Moreover, the cumomer balance equation system presents a unifying formalism for metabolite
flux balancing (0-cumomer balances), positional carbon fraction balancing (1-cumomer balances) and isotopomer
fraction balancing.

4 The General Mod€

All procedures that have been demonstrated by the example are now carried over to a more abstract matrix notation
that is suitable for computer implementation, numerical computations and systems analysis. We restrict ourselves
to networks containing only unimolecular and bimolecular reaction steps. Apart from the fact that the central
metabolism does not contain any reaction step with three or more labeled partners on the educt side, this situation
can be easily handled by replacing a reaction step

A+B+C>D+E+F



by the sequence
A+B+C>AB+C, AB+C >DE+F DE+F>D+E+F

The restriction to bimolecular steps will keep the formal efforts low in the following.

4.1 Isotopomer and cumomer state vectors

As has been done with the positional labeling fractions, all input isotopomer fractions and all intermediate iso-
topomer fractions are numbered consecutively and collected within the vectors '™ and X. In the example they are
given by _

X" = (ag,ao1,a10,a11)" 19)

and x (boo, bo1, b1o, b11,
€0000, €0001 5 €00105 C0011, €0100, €0101, C0110, CO111,
€10005 1001, €10105 €1011, C11005 €1101,C1110, C1111,
d0007 dOOl ) dOlO; dOll; leO; d1017 d1107 dlll;
€00, €01, €10, €11 )T
Here the variables are first arranged by the metabolites they belong to. Secondly, within each metabolite they are
arranged by their index that is interpreted as a binary number. This type of ordering is henceforth called a binary
ordering as opposed to a weight ordering that will be used in the appendix.

Similar to the isotopomer fractions, the cumomer fractions are collected within the vectors x ™ and x which
by convention are always ordered in the same way as the isotopomer fractions (i.e. binary or by weight). In
the following, the bar decoration always indicates that this vector or matrix belongs to the isotopomers while
nondecorated vectors or matrices belong to the cumomers.

4.2 3-dimensional matrices

In order to formulate the isotopomer and cumomer balance equations with a formalism that is similar to that
introduced for positional labeling in Part | it is necessary to introduce a matrix notation that helps to express the
newly arising quadratic terms. Usually quadratic terms in the state variables x are written with a symmetric square
matrix M as x” M x. For example the cumomer balance from Equation (10) can be formulated as

bie €z1
\ \
. ' . Clzzl
P PR B } o
C#1XX1O:§X . - ) - ] . ‘X"U3 +( -1 )X(’U3 +v6)
1
Qi?,lmcl

where the dots indicate zero entries. The factor 1/2 ensures that the quadratic term b, .1 is not counted twice in
the matrix Q3’ ;. The symmetry of Q3’,,,., will be a useful property later on (see Appendix A).

One such square matrix Q;” or Q;~ has to be constructed for each bimolecular flux v;* or v;~ and for each

target cumomer fraction x ;. Herein a nonzero entry ( ;;.)kl corresponds to two cumomers with index & and [
that contribute to the balance of x ; through a bimolecular reaction step v ;.
In order to obtain a more compact notation the matrices Q ; %, j = 1,2, ... are now combined to a 3-dimensional
matrix
N
i1
Q" = :
—
i,dim x
and Q" is formed analogously. Then a vector-valued vector-matrix-vector product is defined to be

T O~
X i1 X

X Qpx = .
xT Q7. X
i,dim x



and similarly for Q{~. The vector-valued term x” Q;* x can now be used together with the matrix-vector products
for unimolecular transitions from Part I, (i.e. P;* x, P{~ x and P x) to formulate the cumomer balances. In

the same way the matrices P, , P, ,P;" and the 3-dimensional matrices Q, , Q; will be used to express the
isotopomer balance equations.

4.3 General matrix notation of the balance equations

Before the cumomer balance equations can be formally written, the isotopomer balance equations have to be
specified first. Using the notation for quadratic terms introduced above and keeping in mind that isotopomer
related terms are written with a bar decoration the general isotopomer labeling balances can be formulated in a
compact way as

1 _p - A/ — [ — - P — P — — =inp —inp __
3 X ( AL ‘Q; vy -Qi>-x+<2vi P+ 'Pi>'x+<zvi P )'X =0 (20

i i

with the bimolecular isotopomer transition matrices 6_27,67, the unimolecular isotopomer transition matrices

F?,?z_ and the unimolecular input isotopomer transition matrices IT',-np. It should be noted that bilinear terms are
not required for input metabolites because the latter must enter into the system by a unimolecular step through the
convention made in Part I. The precise definition of the bimolecular transition matrices is given as follows:

1 if the ¢th forward reaction step combines the isotopomers
(Qi )k = with index & and [ to the isotopomer with index j (21)
0 else
It follows immediately that Ql_; is a symmetric matrix. The unimolecular transition matrices are defined in the
same way as for positional carbon fractions:

1 if the ith forward reaction step carries an isotopomer with index &
over to the isotopomer with index j

=

(P, )jr =4 —1 ifj=Fkand theth forward reaction step (22)
carries isotopomers away from the pool with index j
0 else

The other matrices Q;_j, P, ,P," are defined completely analogous.

The same procedure can now be carried out for the cumomer labeling balances. To this end, the weight of an
index ¢ within the vector x is defined as the weight of the corresponding isotopomer or cumomer. Now bearing in
mind that the cumomer balances are weight-preserving the procedure (12) can be immediately translated into the
formal definition

Q) _ (G;})k,, if weight (k) + weight (1) = weight (5)
Likl = 0 else
5 _ (P, )k, if weight (k) = weight (1)
P ks = { 0 else (23)

and the general balance equation then has the same structure as Equation (20) with the bars removed:

4.4 Transforming isotopomer into cumomer fractions

Based on Equation (24) the cumomer fractions x can be computed by using matrix calculus as is explained in the
Appendix. Finally, it must be explained how the isotopomer fractions x (if required) can be obtained from the
cumomer fractions. To this end the transformation Equations (7-9) are brought into a general matrix notation. It
can be shown that for a single metabolite with n carbon atoms the transformation from its 2 ™ isotopomer fractions
into the corresponding 2™ cumomer fractions is given by the recursively defined square matrices

T, T,
T0:(1)7 Tn+1:< 0 T >



where 0 denotes the zero matrix. For example it holds:

dyws 1 11 1]1 111 dooo
dyw1 S | 1 .1 doo1
dy1a .. 101 11 do1o
dacll _ . - . 1 . . . 1 d011
dige o .. . 1 111 d100
dlxl . . . . o1 . 1 d101
dllz . . . . . . 1 1 d110
d111 1 dlll
Ty
Consequently, there is an overall block diagonal transformation
T, O
x=1]0 T, - | . g% 7.3 (25)

where n1,no, ... are the numbers of carbon atoms of all intracellular metabolites in the system. Similarly, there is

a block diagonal transformation
x"P = i . i (26)

It can be easily proven that the inverse of T, is recursively given by

_ _ T—l _T—l
T,' = (1), T, i = < 3 Tgl > ) (27)
For example it holds:
dooo 1 -1 -1 1|-1 1 1 -1 dyve
doo1 | .1 .1 . 1 Ayt
do1o . . 1 -1 . | 1 dy1g
d011 _ . . . 1 . . . -1 . dacll
d100 . . . . 1 -1 -1 1 diza
d101 . . . . . 1 .o -1 dla:l
d111 . . . . . . . 1 d111
T‘:l

Using these relations the inverse matrices T, (T"™)~! can be easily computed from Equation (25) so that the
switching between the coordinate systems poses no problem.

4.5 The central theorem for cumomer systems

The main theorem for the structural analysis of isotopomer labeling systems is the formal statement that the pro-
cedure (12) is correct:

Theorem: X is a solution of the isotopomer balances from Equation (20) with input vector <™ if
and only if x = TX is a solution of the cumomer balances from Equation (24) with input vector
Xinp — Tinp iinp_

The rather technical general proof is given in (Wurzel, 1997). Based on this theorem the cumomer fractions can
be explicitly computed by successively solving the linear equation systems for the 0-,1-,2-,. . . cumomer fractions
as has been demonstrated for the example from Figure 2. As a consequence the cumomer fractions are always
uniquely given as a rational function I" of the flux vectors v =, v¢~. The same holds for the isotopomer fractions as
is shown by using the transformation from Equation (25). This finally generalizes the complete theory developed
for positional labeling systems in Part I. Several computational examples will be presented in Part IV.

5 Cumomer Networks
The isotopomer network corresponding to a certain metabolite network consists of all isotopomers in the system

and the reaction steps between them. For example the backward direction of the bimolecular stepv3: B+ E > C
in Figure 2 gives rise to the 22 - 22 = 16 isotopomer reactions
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v3: C#ijkl > B#ij + E#kl, ijkl=0,1

Since v3 is bidirectional all corresponding isotopomer reactions are bidirectional, too. The isotopomer balance
equations can be directly constructed from the isotopomer network as has been explained before. On the other
hand, the isotopomer network can be interpreted as a graphical representation of the isotopomer balance equations.
Such a graphical representation can be extremely helpful to understand the structural properties of the system and
to perform simplification operations (Reddy et al., 1993). For this purpose a cumomer network is now constructed
in a completely analogous way as a graphical representation of the cumomer balances. This completes the diagram:

isotopomer — cumomer
network  transformation  network

formulation rules d d formulation rules
isotopomer — cumomer

balances transformation  balances

5.1 Constructing the cumomer network

The cumomer network is constructed according to the following rules starting with the given isotopomer network.
These rules are simply a graphical representation of the procedure (12). Note that for bimolecular steps the forward
reaction must be treated differently from the backward reactions:

CNO: Replace each bi-bi-reaction step w: M + N > P + Q by a sequence wl: M + N > MN, w2: MN > P + Q
of two reactions which are bimolecular on only one side. It should be mentioned that this step is not really
necessary but simplifies the following explanations.

CN1: Replace all isotopomers in the isotopomer network by their corresponding cumomers (i.e. replace each index
0 by X). The result for the backward step of v3 in the running example is:

v3: C#ijkl > B#ij + E#KI, ik =X,1

CN2: Remove all 0-cumomers from the network because the corresponding cumomer labeling fractions are 1 and
thus do not contribute to the balance equations. Because the reaction v3: CH#XXXX > B#XX + E#XX is
completely eliminated by this rule the 16 backward reactions of v3 in the example reduce to the following
15 reactions :

v3: C#ikl > B#ij + E#kl ,ij=X1,1X,11, kl=X1,1X,11
v3: CHXXK > E#kl kl =X1,1X,11
v3: CHiXX > BHij ,ij=X1,1X,11

CN3: Remove all reactions with two products that both have positive weight and replace them by a system efflux.
Of 15 backward isotopomer reactions of v3 only 6 reactions are thus kept in the cumomer network

v3: C#IXXX > B#1X v3: C#XIXX > B#X1
v3: C#XX1IX > E#1X v3: C#XXX1 > E#X1
v3: C#1IXX > B#l1 v3: C#XX11 > E#11

while the others are replaced by an efflux:

v3: C#IX1IX > v3: C#X1IX1 > v3: C#IX11 >
v3: C#IXX1 > v3: C#11i1X > v3: C#X111 >
v3: C#X11X > v3: C#1IX1 > v3: C#lli1 >

The last rule is the most important one because it enforces weight conservation in the cumomer network. No
cumomer pool can have an influx from another pool with higher weight. Consequently, if a cumomer is splitted
into two products then one of the products must have weight 0 and thus is ommitted by rule CN2.

5.2 The cascade of cumomer subnetworks

The resulting cumomer network has considerably fewer bimolecular reaction steps than the isotopomer network
because only those bimolecular steps “survive” that combine two cumomers to a product of higher weight. This
immediately induces a cascaded structure of the cumomer network that is illustrated in Figure 3:

1. The nodes and edges of the n-cumomer network are all the n-cumomers and the cumomer reaction steps
which take place between n-cumomers. These steps are always unimolecular by construction. It is helpful
to arrange the cumomer nets in a three-dimensional graphical representation where the n + 1-cumomer net
lies “above” the n-cumomer net (Figure 3).
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2. The different n-cumomer networks are “vertically” linked by all the bimolecular reaction steps. Each of
these steps by construction combines two cumomers of weight & and [ to a cumomer of weight k + 1, i.e. the
bimolecular steps are always directed “upwards” in the graphical representation (Figure 3).

By construction the sum terms in the cumomer balance equations are in a one-to-one correspondence with the
reaction arrows in the cumomer network. In the same way, the cascaded network structure directly corresponds to
the cascaded linear equation systems presented in Equations (14-18) for the example.

5.3 An alternative notation

In order to obtain an easily readable visual representation of the n-cumomer networks an alternative notation for
cumomers and cumomer fractions is now introduced. This positional notation is much shorter than the binary
notation used before. On the other hand, it is not well suited for the formulation of general balance equations like
that in Equations (6,13). In the positional cumomer notation only the always labeled positions of a molecule are
given by their positional number. For example:

C =C#HXXXX C#24 =C#X1X1 C#1234=C#1111
C#2=C#X1XX C#234=C#X111

In the same way the cumomer fractions are denoted by ¢, ¢», c24 and so on. Note that ¢ = 1 and that in the case
of a 1-cumomer this yields exactly the former notation of carbon atoms and positional labeling fractions. So the
positional notation is compatible with that introduced in Part I. On the other hand it should not be confused with
the positional isotopomer notation used in former publications (Chance et al., 1983). Using the positional notation
the example of n-cumomer networks is visualized by a cascade of subnets in Figure 4.

5.4 The paradox of vanishing cumomers

There is one paradoxical feature of cumomer networks related to those bimolecular reaction steps with two prod-
ucts. This is the apparent vanishing of cumomers from the system as induced by the rule CN3. For instance, the
bimolecular isotopomer reaction step v3 in the example network induces the reaction step

v3: B#2 + E#12 > C#234

in the cumomer network. This step is a transition step from the 1- and 2- cumomer networks to the 3-cumomer
network. If the reverse reaction step is considered there only remains an efflux

v3: C#234 >

from the system because no reaction step can proceed “downwards” in the cascaded reaction system by rule CN3.
Thus C#234 seems to vanish from the system instead of splitting into B#2 and E#12. The explanation for this
effect is that the cumomer C#234 — considered as a set of isotopomers — is actually contained in both cumomers
C#2 and C#34. But the latter have already been taken into account on levels 1 and 2 which explains the paradox:

v3: C#2 >  B#2
v3: C#34 > E#12

6 Solving Structural Flux Identifiability Problems

This section is concerned with flux identifiability by isotopomer labeling experiments. The question is whether
there is enough information contained in the cumomer labeling fractions to identify all the free fluxes in the system.
If this is not the case it is desirable to know which subset of fluxes can be identified. In particular it is of great
interest if more flux information can be obtained with isotopomer measurements compared to only positional
enrichment measurements. As will be shown, a graphical analysis of the cumomer network helps to eliminate
these problems.

The kind of identifiability analysis presented here relies on the assumption that all cumomer fractions are po-
tentially measurable and measurement errors are negligible. Since this is a rather optimistic assumption all results
will be best case results, i.e. in the practical experiment even fewer fluxes might be identified. However, the results
will not be that far from the real situation because for metabolites with at most three carbon atoms all cumomer
fractions can currently be determined by a combination of the different measurement techniques (Wiechert &
de Graaf, 1996). More results on the achievable flux information that also take the available measurements and the
statistical aspects into account will be presented in Part IV.
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6.1 Smplifying cumomer networks

As a first step in this analysis the cumomer network is reduced to a simpler one by removing certain nodes.
Consider for instance the cumomers of C and D in the example network from Figure 2. Because v6 and v7 are
assumed to be unidirectional (an extracellular metabolite splits off) it follows immediately from the cumomer
balance Equations (13) and Equation (2) that (using binary notation)

dijk = Cxijk, 1,5,k =um,1 and  cijr = bijen, 0,4,k l=2,1 (28)
(see also Equations (14-18)). Such relations are called labeling redundancies.

These redundancies imply that the cumomer fractions of C and D contain no additional flux information as
compared to their predecessors B and E. In particular this redundancy holds independently of the current flux
values. Thus, with respect to flux identification, redundant variables can be eliminated from the balance equations.

An even better idea is to remove the redundant nodes directly from the cumomer network. To this end, the fol-
lowing graphical elimination rules for cumomer network simplification by removing redundant nodes are generally

valid (see Figure 5):

S1: If a metabolite M has only one influx vi: N > M and v is unidirectional then M can be removed from the
network and within all its (necessarily unidirectional) effluxes wl: M > P1, w2: M > P2,... the node M
can be replaced by N.

S2: If a metabolite M has only one influx v: N > M and v is bidirectional then this flux can be assumed to be
unidirectional. Its value must be assigned to the net flux of the original step.

By iteratively applying these rules the 3- and 4-nets from Figure 4 completely vanish. Figure 6 shows what
results for the 1- and 2-cumomer network. From these networks two simplified sets of balance equations for the
remaining two intracellular metabolites B and E can be directly read off:

B vy’ +olt ot = v+ s

B#l : by (v’ + 05 +v5?) = ajvy +ervi

B#2 : by (v’ + 05 +v5") = axvi’ +exvi

B#12: b12 (’U? + Uget + U?) = Qa2 ’Uf) + e12 U; 29
E vy ol +uy = vy o @)
E#l : e; (v5 + 03 +o) = brvy + by ol

E#2 : ex (05 + 05 +u) = bovy +eg v

E#12: €12 (’1}5_ + Uget + U4_)) = b12 UQ_) + b2€1 Uget

As can be seen, only the net flux of 5% influences the systems labeling state. Consequently, v3* and v§~ cannot
be distinguished from flux or labeling measurements. Thus v3 can be assumed to be unidirectional without loss of
information.

6.2 Solving the flux identifiability problem

Taking v§~ = 0 the aim is now to represent the remaining 4 free fluxes v;”,v5”,v3 ,v3” as a function of the
6 cumomer fractions by, bo, b2, €1, €2, e12. There is a chance to find such functions because the simplified net-
work from Figure 6 contains no more redundant nodes that can be eliminated with the simplification rules. But
unfortunately it will be shown now that the reduced net can still be used to derive another type of redundancy
relation.

To this end, it should be noticed that all remaining nodes in the reduced network have only two influxes. In this
situation the ratio of these influxes can always be directly computed from labeling fractions. For example, looking
at the nodes B#1, B#2 and B#12 and using the flux balance for B in Equation (29) it immediately follows that

’Ul_> _ €1 — bl

_ ez — by _ e12 — bra

(Lz—bg

(30)

== =
Uy ar — by a1z — b1z

which are three different formulas for the same flux ratio. This is an immediate consequence of the fact that the
network has the same structure at all three cumomer nodes. Similarly, another flux ratio can be computed threefold

from the E balances:

N
Uy _61—b2__€2—€1__€12—€1'bz

31)

Ug_) er — b B ey — by B ez — bin
As an immediate consequence there are four algebraic relations from Equations (30,31) between the labeling

variables that hold independently from the actual flux situation. These relations can be used to eliminate some
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variables from the system. For example it follows from Equation (30) that

er— by

5y = b Aa> — b

€s Z+a1—b1 (az z)
e1 —b

ez = bip+ ! 1'(012—512)
a1 — 01

always hold. Substituting these equations into Equation (31) (which is not carried out here for the sake of brevity)
it finally turns out that four of the six labeling variables are redundant with the others and thus carry no additional
flux information.

In summary, all cumomer labeling fractions in the system can be directly computed from the knowledge of
only two cumomer fractions as e.g. by, e; irrespective of the current flux values. Even if one extracellular flux
were directly measured this would not help to determine all the fluxes from whatever cumomer fractions are given.
However, partial information can be obtained. If for example v 7 is measured then v$~ can be determined from
Equation (30) while v3” and v3* remain hidden. Finally, if two fluxes like e.g. v;* and vz” are measured all other
fluxes can be computed from Equations (30) and (31) by using only fractional enrichment data.

6.3 Another interesting example

The example discussed above is somewhat disappointing because in this case isotopomer measurements are not
superior to positional measurements. However, this is not generally the case as the example from Figure 7 shows,
that is derived from an example in (Schmidt, 1998). It is now rigorously analyzed with the methods presented
above. The corresponding reaction equations are given by (see Figure 7):

u A >B vli: B >C wl: C >F
HXY >HXY H#XY >HXY #Xy  >#xy

r- F >G v2: B >E w2: E >F
HXY >HXY H#XY>HYX #Xy  >#xy
v3: B >D +D w3: D +D >F

HXY>SHX +H#y #X HHY>SHXY

The example is constructed such that the reactions v1,w1 and v2,w2 keep the two carbon atoms of the input
metabolite A together (but with opposite orientation) while v3 splits the molecule D and w3 reunites the carbon
atoms. All fluxes are assumed to be unidirectional and the free fluxes are v{”,v5”, v3”. The substrate uptake

u” =0 oy vy (32)

is assumed to be measured as usual. The remaining fluxes are then givenby w;” = v;”, i =1,2,3andr~ = u™".

From Figure 7 it becomes immediately clear that all nodes are redundant except for D#1, F#1, F#2 and F#12.
The reduced 1- and 2-cumomer networks are shown in Figure 8. From these nets the reduced balance equations
are given as:

D#1 : dy 2v3” = a1 vy + axvy

F#l : fi (vi7 vy +v37) = ap vy + az vy + divg (33)
F#2 : fo (v +v3 +v37) = ax vy’ + a3 vy + divsg’

F#12: fio (v +vy +v3’) = appvy + appvy +  divg’

The most important structural property of this example is that the D-nodes only occur on level 0 and 1. On
level 1 D#1 has two separate influxes and it follows:

1
d1 = 5 ((Ll + ag) (34)
Thus d; is a redundant node. Substituting the value for d; into the balances for F#1, F#2 and summing up these
two balances it turns out that
a1 +ax=fi+fa . (35)

This means that f; is redundant with f» and consequently there is no chance to determine the three free fluxes
from positional labeling data even if the influx » — is directly measured. Interestingly, by subtracting the balance
for F#1 from that for F#2 in Equation (33) it can be seen that

v?—vz_’:u_’-iﬁiﬁ , (36)

i.e. at least the difference flux can be obtained from the positional enrichment data.
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The last hope for flux identification is that f» contains some additional information on the free fluxes. Indeed
from the corresponding balance and Equation (34) it follows:

N N a2 — f12
= . . 37
12 — (a1 + a2)2/4 ( )

Combining this result with Equations (32,36) all free fluxes are determined from labeling measurements. Thus
an example has been found, where the isotopomer measurements contain more information than the positional
labeling measurements.

6.4 The general concepts

The above results have been derived in a rather intuitive way. However there is a systematic way to produce redun-
dancy relations for labeling fractions like those in Equations (30,31,35) and identifiability relations for fluxes like
those in Equations (36,37) by using the computer algebraic algorithms developed in (Wiechert, 1995). However,
for ease of understanding these algorithmic details have been omitted in this text.

The most important concept for the analysis of cumomer networks with respect to flux identifiability is the
redundancy of cumomer fractions. A (general) redundancy is a (possibly nonlinear) equation f (x) = 0 that holds
whatever the flux values in the metabolic system are. In this situation one variable x ; can be expressed by the others
and thus contains no additional information on the fluxes. So the presence of redundancies reduces the available
information for flux identification. Once all the redundancies have been determined the flux identifiability can be
easily decided based on the dimensional relation:

Number of identifiable free fluxes < Number of independently measured fluxes
+ Number of isotopomer measurements (38)
— Number of redundant isotopomer fractions

However, it must be pointed out that the number of redundant fractions may not equal the number of redundancy
relations found. The reason is that there may be complex algebraic dependencies between the relations that are
hard to find in general (Cox et al., 1992). Fortunately, the algebraic independency of the few nonlinear equations
derived in the examples above can be proven by using the computer algebraic methods from (Cox et al., 1992).

7 Conclusion

In this contribution it has been shown that isotopomer systems have much in common with positional labeling
systems. In fact they are not as nonlinear as was previously assumed. After a linear transformation from the
isotopomer space to the cumomer space the balances can be solved from a cascade of linear equations. In particular
the balances for metabolite fluxes, positional carbon enrichments and isotopomer fractions are just three facets of
one unifying cumomer balance equation.

For this reason cumomer systems now seem to be the more adequate representation of the balances because
the system can be better understood by using these coordinates. The greater simplicity of the cumomer balances
is reflected by the cascaded structure of the cumomer networks which contain much fewer bimolecular steps. All
numerical and statistical methods formerly derived for positional labeling systems can now be extended straight-
forwardly to isotopomer systems. This will be carried out in Part IV.

A simple example showed that — compared to positional labeling systems — isotopomer measurements in prin-
ciple enable additional fluxes to be determined. On the other hand, the given examples of cumomer systems lead to
the conjecture that the achievable information increase is not as large as might be expected from the sheer number
of available measurements. In particular, the structure of the higher cumomer networks becomes progressively
simpler. For example all 5-, 6- and 7-cumomer nodes and almost all 4-cumomer nodes in the pentose phosphate
pathway are isolated nodes, i.e. their labeling state is completely determined by the labeling state of the lower
cumomer nets. From these considerations it can be conjectured that the carbon atom network is generally the
most informative part of the network and the higher networks contain progressively less flux information due to
redundancy.

A clear statement can be made concerning labeling experiments with fully labeled substrates (Szyperski, 1995).
For such experiments it is clear that all positional enrichments in the system will always become equal to the frac-
tion of fully labeled molecules in the input. Thus the carbon atom network contains absolutely no information for
such experiments and all fluxes have to be computed from higher cumomer measurements. Clearly, this approach
will be suboptimal (which has also been found by (Schmidt, 1998)) and will be quantitatively demonstrated in Part
IV. A better approach might be to apply a mixture of a completely labeled and a positionally labeled isotopomer
as input. This question will be decided in Part IV.
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A General Solution of the Cumomer Balance Equations

The solution algorithm for general cumomer balance equations has been introduced by using the example from
Figure 2. This algorithm will now be developed in complete generality to enable an automatic solution based on
matrix calculus. A complete software implementation of the computational procedures has been supplied by the
authors.

A.1 Wkight ordering of the state vector

The key feature of the cumomer fraction balances turned out to be their weight preservation. In this section
another ordering of the vectors x'™, x is used that is more feasible for the exploitation of weight preservation than
the binary ordering introduced in the main text. A weight ordering of x first arranges all cumomer fractions by
their weight and then orders the cumomers with equal weight binarily. For example a binary variable ordering for
the example from Figure 2 is given by (cf. Equation 19)

X = ( bzz; Coxxa, dwxwa €rax, (WEIght 0)
bzl; blxa Crexl; Cexle, Crlzz, Cloae, dzzl; dwlz; dlzza €z1, €1z, (WEIght ]-)
bi1, Cawll,s Calals Callas Claal, Clala, Clizas dail, i1, i1z, €11, (Weight 2)
Czl111,Clell, Clizl, Clilas d111, (weight 3)
cinnn)’ (weight 4)

Using a weight ordering x and x'™ can be partitioned as
Oxinp 0

; 1N 1
x"™ = X' and x= x

where the vectors ¥x™™, ¥x comprise all cumomer fractions x; with weight (i) = k. It should be noted that there
is a change in the meaning of the state vectors x'™ x compared to their definition in Part I. The former positional
labeling state vectors are exactly 'x'™ 1x, i.e. a segment of the new state vectors. Clearly, the defining Equations
(21,22, 23) produce different transition matrices for different orderings of the state vector. However, Equation (24)
remains correct for any ordering because vectors and matrices are permuted in the same way.

This does not hold for the transformation from isotopomer into cumomer fractions as given in Equation (26)
because this definition depends on a binary index ordering. If a weight ordering is chosen for x ™, x then before
applying the transformation matrix from Equation (25) all entries of the state vectors must be first reordered into a
binary ordering. This is achieved by using permutation matrices IT ™, II. The general transformation rule then is

x" = [T TP I . g™ and x =TT TII-X
and the inverse transformation is also easy to compute by using Equation (27) and IT —! = IT” which always holds

for permutation matrices.

A.2 Partitioning of the system matrices

Corresponding to the partitioning of the state vectors into segments of equal weight in definition (A.1) the uni-
molecular transition matrices P;” can be partitioned into a block diagonal structure as

OQf 0 .0
pp—| 0 Q" -0

(3

with dim7x x dimJx-matrices /Q;*. The reason for the diagonal shape is that due to weight preservation a
cumomer fraction can only contribute to the balance of a cumomer with identical weight. Consequently,

OPZ»_’ -0x
p - 1x
P -x= 2P 2x . (39)

Similar formulas hold for P{~ - x and P™ - 1",
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In the same way, the 3-dimensional bimolecular transition matrices Q;* partition into
dim7x x dim *x x dim ‘x submatrices but only those submatrices with j = &+ [ are nonzero. These nonzero sub-
matrices are denoted by *!Q;?, which contains all bimolecular transitions where a k-cumomer fraction combines
with an I-cumomer fraction thus contributing to the balance of a £ + I- cumomer fraction. This yields the formula

OXT_O,OQi—)_OX

0,7 0,1 1 1.7 . 1,0 0
oo o | X Qe X X Qe
xI'- Q7 -x= OXT.0,2Q7.2X+1XT_171Q?_1X+2XT,0,ZQ7,2X

and a similar one for x* - Qf - x.

A.3 General solution of the balance equations

With these matrix partitions the general algorithm for solving the cumomer balance equations can now be given.
It starts with °x = 1 (the vector composed of all 1s) and continues recursively with the solution for *x, 2x,.... To
this end, it is now assumed that all cumomer fractions °x, 'x, ..., " !x have already been computed. Then from
Equations (24,39), the balances for the n-cumomer fractions can be written as:

1 . X .
3 Z l’”XT- (va-“Qf +Vf-k’le> -lx]
i

k+l=n
+ (Z Vi P 4 ”Pf) X+ (Z v "Pi-”p> X =0. (40)
i i
Now from the symmetry of Q;7, Q{~ with respect to x it follows

T
0x" .0nQ, - "x =1-2"Q;-"x andalso "x-"°Q;-’x=1-"°Q; "x

Here 1 - %"Q; and 1 - ™°Q; are just ordinary matrices so that all terms become linear with respect to "x .
Rearranging Equation (40) by exposing "x now produces:
DoV 1 (MQT +PQT) v L (MUQT +0"QT) v TP v TP x

~ v

known matrix " A (v)

1 kT k.l k.l 1 inp in
f 13 [x .(Zvr- Q7 +viHQr ) |+ 3 (v R o,
o 12

~ v
g

known vector "b (v, 'x,...," " 'x)

From this the solution ™x is computed as
"x="A"'(v)-"b(v,'x,...," 'x)

It can be proven that the matrix ™ A is invertible in all practically relevant situations (Wurzel, 1997).
In summary, the vector x is computed as a function of x"™ and v by solving a cascade of linear equations:

1 = Ox

0 = 'A(v) x+'b(v)

0 = 2A(v): %x+?2b(v,'x) (41)
0 = 3A(v) 3x+3b(v,'x,%x)

Here the 1-cumomer equation is exactly the well-known positional carbon labeling balance equation from Part I.

A.4 Derivative of the balance equations

Numerical optimization algorithms and the statistical evaluation methods that will be developed in Part IV require
the knowledge of the derivative 0x/dv (i.e. the sensitivity of the labeling state with respect to the fluxes). The
straightforward way to calculate these sensitivities is given by an implicit differentiation of the balance Equation
(24). Although this is quite easy to implement it is computationally rather expensive because a matrix of dimension
dim x has to be inverted which requires O(dim x3) computational operations.
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A much more efficient way is to differentiate the whole cascade (41). At level n an implicit differentiation
yields:
0("A)
ov;”

d("x) 6("b 'x)

0= v T az av

(v) - "x +"A(v) -

(42)

The only unknown quantity at this stage is 9("x)/dv;” which means that the matrix factorization for " A (v) that
was necessary to solve Equation (41) can be reused for solving Equation (42). Because matrix factorization is the
most time consuming operation in the solution algorithm this shows that the sensitivities can be computed with
negligible effort. However the proper implementation of the implicit differentiation procedure is rather difficult
and must be carefully tested. This has been done by computing numerical derivatives in parallel.

18



References

Chance, E.M., Seeholzer, S.H., Kobayashi, K., & Williamson, J.R. 1983. Mathematical analysis of isotope labeling
in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J. Biol. Chem., 258,
13785-13794.

Cox, D., Little, J., & O’Shea, D. 1992. ldeals, Varieties and Algorithms — An Introduction to Computational
Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer.

Donato, L. Di, Rosiers, C. Des, Montgomery, J.A., David, F., Garneau, M., & Brunengraber, H. 1993. Rates of
Gluconeogenesis and Citric Acid Cycle in Perfused Livers, Assessed from the Mass Spectrometric Assay of
the 13C Labeling Pattern of Glutamate. J. Biol. Chem., 268(6), 4170-4180.

Jeffrey, F.M.H., Rajagopal, A., Malloy, C.R., & Sherry, A.D. 1991. 13C-NMR: a simple yet comprehensive method
for analysis of intermediary metabolism. TIBS 16, 5-10.

Katz, J., Wals, P., & Lee, W.-N.P. 1993. Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-
labeled lactate. J. Biol. Chem., 268, 25509-25521.

Klapa, M.1., Park, S.M., Sinskey, A.J., & Stephanopoulos, G. 1999. Metabolite and Isotopomer Balancing in the
Analysis of Metabolic Cycles: I. Theory. Biotechnol. Bioeng., 62, 375-391.

Kiinnecke, B., Cerdan, S., & Seelig, J. 1993. Cerebral Metabolism of (1,2-'3C,)Glucose and (U-'3C,)3-
Hydroxybutyrate in Rat Brain as Detected by 13C NMR Spectroscopy. NMR in Biomedicine, 6, 264-277.

Lapidot, A., & Gopher, A. 1994. Cerebral metabolic compartmentation — Estimation of glucose flux via pyruvate
carboxylase/pyruvate dehydrogenase by 1>C NMR isotopomer analysis of D-[U-'3C] glucose metabolites. J.
Biol. Chem., 269, 27198-27208.

Lee, W.-N.P. 1993. Analysis of tricarboxylic acid cycle using mass isotopomer ratios. J. Biol. Chem., 268, 25522—
25526.

Lee, W.-N.P,, Byerley, L.O., Bergner, E.A., & Edmond, J. 1991. Mass isotopomer analysis: Theoretical and
practical considerations. Biological Mass Spectrometry, 20, 451-458.

Malloy, C.R., Sherry, A.D., & Jeffrey, FM.H. 1988. Evaluation of carbon flux and substrate selection through
alternate pathways involving the citric acid cycle of the heart by *C NMR Spectroscopy. J. Biol. Chem,,
263(15), 6964-6971.

Marx, A., de Graaf, A.A., Wiechert, W., Eggeling, L., & Sahm., H. 1996. Determination of the Fluxes in Central
Metabolism of Corynebacterium glutamicum by NMR spectroscopy combined with Metabolite Balancing.
Biotechnol.Bioeng., 49, 111-129.

Méllney, M., Wiechert, W., Kownatzki, D., & de Graaf, A.A. 1999. Bidirectional Reaction Steps in Metabolic
Networks. Part 1V: Optimal Experimental Design of Isotopomer Labeling Experiments. Biotechnol.Bioeng.
This volume.

Park, S.M., Shaw-Reid, C., Sinskey, A.J., & Stephanopoulos, G. 1997. Elucidation of anaplerotic pathways in
Corynebacterium glutamicum via '*C-NMR spectroscopy and GC-MS. Appl. Microbiol. Biotechnol., 47,
430-440.

Reddy, V.N., Mavrovouniotis, M.L., & Liebman, M.N. 1993. Petri Net Representations in Metabolic Pathways.
Pages 328-336 of: Hunter, L., Searls, D., & Shavlik, J. (eds), ISMB-93, Proceedings of the First International
Conference on Intelligent Systems for Molecular Biology. AAAI Press.

Schmidt, K. 1998. Quantification of intracellular metabolic fluxes with 13C tracer experiments. Ph.D. thesis,
Technical University of Denmark.

Schmidt, K., Carlsen, M., Nielsen, J., & Villadsen, J. 1997. Modelling Isotopomer Distribution in Biochemical
Networks Using Isotopomer Mapping Matrices. Biotechnology and Bioengineering, 55(6), 831-840.

Siefke, C. 1996. Ein numerisches Verfahren zur FluRschatzung bei metabolischen 12 C-Mar kierungsexperimenten.
Diploma dissertation, University of Bonn.

Szyperski, T. 1995. Biosynthetically directed fractional 1C-labeling of proteinogenic amino acids — An efficient
analytical tool to investigate intermediary metabolism. Eur.J.Biochem., 232, 433-448.

Szyperski, T. 1998. '3C -NMR, MS and metabolic flux balancing in biotechnology research. Quart. Rev. of
Biophysics, 31.

19



Wiechert, W. 1995. Algebraic Methods for the Analysis of Redundancy and Identifiability in Metabolic **C
Labelling Systems. Pages 169-184 of: Schomburg, D., & Lessel, U. (eds), Bioinformatics; From Nucleic
Acids and Proteins to Cell Metabolism. Verlag Chemie.

Wiechert, W. 1996. Metabolische Kohlenstoff-Markierungssysteme — Modellierung, Smulation, Analyse, Date-
nauswertung. Habilitation Thesis, University of Bonn, Jilicher Forschungsbericht 3301, ISSN 0944-2952.

Wiechert, W., & de Graaf, A.A. 1996. In Vivo Stationary Flux Analysis by '3C Labelling Experiments.
Adv.Biochem.Eng.Biotechnol., 54, 109-154.

Wiechert, W., & de Graaf, A.A. 1997. Bidirectional Reaction Steps in Metabolic Networks. Part I: Modelling and
Simulation of Carbon Isotope Labelling Experiments. Biotechnol.Bioeng., 55, 101-117.

Wiechert, W., Siefke, C., de Graaf, A.A., & Marx, A. 1997a. Bidirectional Reaction Steps in Metabolic Networks.
Part 11: Flux Estimation and Statistical Analysis. Biotechnol.Bioeng., 55, 118-135.

Wiechert, W., Mollney, M., & Wurzel, M. 1997b. Modelling, Analysis and Simulation of Metabolic Isotopomer
Labelling Systems. In: 15th IMACSWorld Congress, Berlin, August 1997.

Wurzel, M. 1997. Sabilitat und eindeutige Losbarkeit von |sotopomeren-Bilanzgleichungssystemen. Diploma
dissertation, University of Bonn.

Zupke, C., & Stephanopoulos, G. 1994. Modeling of isotope distributions and intracellular fluxes in metabolic
networks using atom mapping matrices. Biotechnol.Prog., 10, 489-498.

20



B Figuresand Tables
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Figure 1: The 2% = 8 isotopomers of a molecule with 3 carbon atoms together with the corresponding isotopomer
fractions and positional carbon enrichments
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Figure 2: Example network used for the introduction of isotopomer and cumomer balances. a) Metabolic network
with flux names. b) Corresponding carbon atom transitions.
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Figure 3: Cascaded structure of the cumomer network. The n-cumomer networks are arranged vertically and they
are linked by the bimolecular reaction steps. The 0-cumomer network is identical with the underlying metabolic
network and usually is completely eliminated because all its cumomer values are 1 by definition. However it has
been kept in the Figure for illustrative purposes.
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Figure 4: All n-cumomer networks (n = 0, 1, 2, 3, 4) for the example from Figure 2. The shaded bimolecular steps
are only drawn within their target subnetwork but without their educts, which belong to a lower level.

Original Network

S1: N M

Simplified Network

P
Q
R
P
Q

S2: Ne& M

/N /AN

R

Figure 5: Schematic representation of the network simplification rules for eliminating redundant nodes.



Level 1 Level 2

Figure 6: Reduced 1- and 2-cumomer networks of the example network from Figure 4. Bidirectional fluxes that
have been replaced by net fluxes (see Figure 5) are indicated by a feathered arrow.
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Figure 7: Example network proving the principal superiority of isotopomer experiments over positional enrichment
experiments.
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Figure 8: Reduced 1- and 2-cumomer networks from Figure 7.
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