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Abstract: Metabolic carbon labelling experiments enable alarge amount of extracellular fluxes
and intracellular carbon isotope enrichments to be measured. Since the relation between the
measured quantities and the unknown intracellular metabolic fluxesis given by bilinear balance
equations, flux determination from this data set requires the numerical solution of a nonlinear
inverse problem. To thisend a general algorithm for flux estimation from metabolic carbon la-
belling experiments based on the least squares approach is developed in this contribution and
complemented by appropriate tools for statistical analysis. The linearization technique usually
applied for the computation of nonlinear confidence regionsis shown to be inappropriate in the
case of large exchange fluxes. For this reason a sophisticated compactification transformation
technique for nonlinear statistical analysis is developed. Statistical analysisis then performed
by computing appropriate statistical quality measures like output sensitivities, parameter sensi-
tivities and the parameter covariance matrix. This alows to determine the order of magnitude
of exchange fluxesin most practical situations. An application study with alarge data set from
lysine producing Corynebacterium glutamicum demonstrates the power and limitations of the
carbon labelling technique. It is shown that al intracellular fluxes in central metabolism can
be quantitated without assumptions on intracellular energy yields. At the same time several ex-
change fluxes are determined which is an invaluable information for metabolic engineering.

Keywords:. stationary flux estimation, sensitivity analysis, covarianceanalysis, non-linear statis-
tics, Corynebacterium glutamicum



| ntroduction

In the preceding contribution [Wiechert (1996b)] (henceforth denoted as Part 1) we devel oped
ageneral modelling approach for stationary metabolic carbon isotope |abelling experiments that
extendsthe well established metaboliteflux balancing technique[Vallino (1992), Varma (1994)].
Strong emphasis was laid on the description and analysis of bidirectional reaction steps and
on the documentation and exploitation of biological assumptions made on intracellular fluxes.
A simulation strategy for labelling experiments and the corresponding computational methods
were introduced and some general properties of labelling systems were derived. In this contri-
bution we now concentrate on flux estimation from given experimental data and the statistical
analysis of the achieved results. The problemsthat haveto be expected due to the bilinear struc-
ture of the carbon labelling bal ance equations with respect to fluxes and fractional |abelling have
already been illustrated in Part I.

Available measurement data

Theexperimental detailsof metabolic carbon labelling experimentsare described e.g. in[Anderson (1983),
Wiechert (1995c), Wiechert (1996a)]. The set of measured data obtained with such experiments
is aways subdivided into two parts:

1. Extracellular metabolite fluxes between the cell interior and the surrounding medium or
the biomass like substrate uptake, product formation, incorporation of precursor metabo-
litesinto biomass or gas efflux are measured with standard bioreactor instrumentation us-
ing theideasfrom [Holms (1986), Neidhardt (1990), Vallino (1991)]. The metaboliteflux
balancing techniqueissolely based onthisdata[Vallino (1992), Goel (1993), Varma (1994),
Jorgensen (1995)].

2. Fractional enrichments of '2C label within certain carbon atom positions of intracellular
metabolite pools are measured by NMR. In particular the usage of hydrolysed intracellu-
lar polymers recently led to a dramatically increased amount of available labelling data
[Marx (1996), Wiechert (1996a), Wiechert (1996b)].

For the experiment described in [Marx (1996)] atotal of 14 extracellular fluxes and 26 frac-
tional carbon isotope enrichments were determined (including the fractional enrichments of the
ribose-5-phosphate pool that has now also become available). This large amount of measured
data requires the devel opment of sophisticated methods for flux estimation and statistical anal-
ysis.

Flux estimation and statistical analysis

Theultimategoal of our carbon labelling experimentsisthe estimation of theintracellular metabo-

lite fluxes that were present during the experiment from the avail able measurement data. While

thiscan beachieved by direct matrix computationsin the case of metaboliteflux balancing [Lawson (1974),
Vallino (1991), van Heijden (1994a)] the bilinearity of carbon labelling systems prevents this

simple approach. The same holdsfor the statistical analysis of the estimated fluxes, i.e. classical

results of linear statistics [Chatterjee (1988)] can be readily applied to metabolite flux balancing

[Wang (1983), Vallino (1991), van Heijden (1994b)] but must be appropriately extended to the
nonlinear situation.



Currently, only rudimentary results (mostly for special metabolic systems) on flux estimation
and statistical analysis for carbon labelling experiments can be found in the literature. Three
basic approaches can be distinguished:

1. Most authors[Walsh (1984), Jans (1989), Sharfstein (1994), Chauvin (1994), Rollin (1995)]
derived explicit formulasfor flux determination based on only asingleor afew metabolites
as has been done in Part | for asimple example. This approach iswell suited for solving
the general identifiability problem [Wiechert (1995a), Wiechert (1995b)], i.e. for deciding
whether the avail able data contains sufficient information for the determination of all un-
known intracellular fluxes. Itsmain disadvantageisthat redundant measurement informa-
tion cannot be used for improving the statistical quality of the estimated fluxes. Moreover,
it turns out that for complex networks the algebraic complexity of the involved bilinear
bal ance equations is much too high for the application of general algebraic solution algo-
rithms[Wiechert (1995b)]. In particular when bidirectional stepsareincorporated into the
model an explicit solution that may have been worked out for the unidirectional case will
be much more complicated if not even impossiblein the bidirectional case.

2. Thegraphical technique of contour plot superposition [Zupke (1994)] already used in Part
| for representation purposes enables the uniqueness and well-determinedness of the flux
estimate to be quickly decided and the statistical quality of the estimates can be judged in
asimple way by graphing sensitivities and confidence regions (see below). However, this
method is restricted to low-dimensional parameter spaces and is again not suited for the
exploitation of redundant information contained in additional measurements.

3. A generally applicable numerical approach that can utilize redundant measurements and
enables statistical quality measures to be derived as well is the familiar parameter fitting
approach [Crawford (1983), Rabkin (1985), Chatham (1995), Marx (1996)]. However, it
iswell known that this approach may suffer from the existence of multiple solutionsor ill
determined estimates due to non-identifiable parameters. In Part | an example from the
cyclic pentose phosphate pathway was given, for which two alternative flux solutions can
be found (cf. [Zupke (1994)] for another example).

From these approaches only the last one can be universally applied to any carbon labelling ex-
periment because it does not require any model-specific work. Moreover (as is explained be-
low) this method can always accompanied by linearized statistical analysisin a canonical way.
Finally, the existence of possible multiple solutions can in practice be detected by a multiple
offset of the parameter fitting algorithm (see below). For these reasons we have pursued a pa-
rameter fitting approach. The reader interested in general algebraic approachesfor explicit flux
determination and identifiability analysisis referred to [Wiechert (1995a), Wiechert (1995b)].

Aims of this contribution

Our aimwasto extend thewel| established computational and statistical theory for linear metabo-
lite flux balancing [Vallino (1991), van Heijden (1994a), van Heijden (1994b)] to the more gen-
eral non-linear case of carbon labelling systems based on the general model described in Part 1.
Theresult isauniversal method for metabolic flux estimation and statistical analysisby station-
ary carbon isotope labelling experiments. After acomprehensive summary of the general model
equations from Part | this contribution concentrates on the following aspects:



i)

The development of apowerful generally applicable algorithmfor flux estimation that can
be applied to any metabolic network, respectsall imposed flux constraints and is numeri-
cally stable when large exchange fluxes occur (cf. Part ).

Theexemplificationand in depth discussion of the nonlinear statistical problems caused by
measurement errors leading to a powerful generally applicable nonlinear transformation
method for estimating confidence regions.

The demonstration of the power and limitations of the statistical methods using acomplex
application example concerned with lysine producing Corynebacterium glutamicum. As
in Part | the main emphasis will be on the question to what extent exchange fluxes can be
estimated from the given data set.

The implementation of all described algorithms within a flexible software framework as
documented in Appendix B.

This distinguishes the current approach from formerly applied flux estimation methods in-
cluding the preliminary parameter fitting approach appliedin [Marx (1996)]. Another important
aspect of the availability of redundant measurements is the possibility to improve the statistical
quality of the computed flux estimate, to test the models' ability to describe the measured data,
to detect gross measurement errors and to perform validation studies by comparing different
models[Wang (1983), Vallino (1991), van Heijden (19944), van Heijden (1994b)]. Thesetech-
nigues will be shortly addressed although we cannot elaborate on them in this context.

Summary of model equations

Theintroduced symbols and general model equationsderived in Part | are summarized below to
supply al structures required for the solution of the flux determination problem.

Transformations, balances and constraints

1

2.

The state variables are given by the following vectors (where both flux vectors v, v
have the same dimension):

fractional labelling state of all enumerated carbon pools x [%0]
labelling state of the enumerated input carbon atoms x!"P [%0]
enumerated forward metabolite fluxes v~ [mol/(h- g DW)]
enumerated backward metabolite fluxes ve  [mol/(h- g DW)]

Fluxes are alternatively represented within three different coordinate systems by

natural flux coordinates as forward and backward fluxes v, ve
application flux coordinates as net and exchange fluxes Vet yxe
numerical flux coordinates  as net and [0, 1]-rescaled exchange fluxes v"®,v*ci04]

h

whereall flux coordinate vectors v, v, v, v*® have the same dimension and physical
unit while v**"%1 js dimensionless. The respective coordinate transformations defining
these alternative coordinate systems are given by

Vet v v _ min (_Vnet’ 0)
(I)-<chh> — <V<—>—<chh_min( Vnet70) (1)
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where 0 isthe zero vector and the minimum hasto be taken component-wise and the com-
pactification map

q)[O,l] ‘ Vnet . Vnet _ Vnet (2)
8 : chh[o,l] chh - ,@ i chh[o,l]/(l _ chh[o,l]) .

Hereinall entriesof thevector 1 are1, 3 isafixed constant (agood choice being therate of
substrate uptake into the system) and the vector division has to be taken component-wise.

. The carbon label flux balance equations exhibit the general structure

(ZV?'P?-I_ZV;_'P;_)'X-I'(ZV?'Pan)'Xinpzo (3)

withthesquaredim x x dim x atomtransition coefficient matricesP;> , P, = 1, ...,dim v,

and the dimx x dimx"" input atom transition matrices P!, = 1, ..., dimv ™.
. Various assumptions about metabolite fluxes like metabolic stationarity, unidirectionality

of reaction stepsor rapid equilibriacaused by large exchange fluxes are expressed by two
linear flux constraint equations

Nnet _Vnet — nnet

and Nxch01] .xch[01] _  pxch[0]] ’ (4)

wherethe dim n"™ x dim v"™ net flux constraint matrix N, the dim n**"%4 x djm v*cio.1
exchange flux constraint matrix N**"%1 and the constraint value vectors n™®, n**"% gre
given and fixed.

. When redundancies of equations are excluded (which should always be the case for a
correct model formulation) the Equations (4) leave dim v™ + dim v*M0Y — dimn" —
dim n*"% degrees of freedom for the determination of all flux coordinates. Thefreeflux
coordinates representing these degrees of freedom are defined by an arbitrarily given third
constraint equation

Niree. v _free (5)
VXeho1] =n .

The combined constraint matrix and the combined constraint value vector are then defined
by

Nnet 0 nnet
N = 0 Nxch[o,l] and n = rlxch[0,1]
Nfree rlfree

The choice of N is only restricted by the requirement that N is square and invertible.
By combining Equations (4) and (5) wethen get the overall linear constraint equation than
can be formulated within different coordinate systems by

1 aod—1 [ VTN _ v _ 6
N-o O(‘Dﬁ) ve =N- yxenoy | =1n . (6)

Notice that this equation is linear in the (v, v*%1) coordinate system but non-linear
with respect to (v, v¥).



6. Similarly a combined inequality constraint equation for specifying range restrictions or
directionality assumptionsis given by

U ool (VY _p. (VS > 7
o ( 8 ) « | = VXeh01] Zu (7)

A%

withadimu x (dim v"™ + dim v**"%4) matrix U and the inequality value vector u. The
fluxes v, v*N0 (or v, v* respectively) satisfying these constraintsare called feasible
fluxes.

7. Inthiscontribution the flux and label measurement equations given by Equations (14) and
(15) will be added to the model equations.
Derived equations
Two important results that have been proven in Part | will be used in the following:

1. Thelabellingstatex turnsout to beafunctionT" of the natural flux state obtained by solving
Equation (3):

x=17T <z:>:_<ZV7PZ_’+Zv;—P;—) .(ZV?_PLHD)_Xinp ©)

2. There exists a matrix K™ and a vector k™ such that the solution of Equation (6) as a
linear function ¥ of n" is given by (see Equation (21) in Part )

v free free __free free
. | = U (nf) = Kfre. piree  kfree 9)

\%

A Simple Example

The simple examplenetwork used in Part | to introduce the model equationswill also serveasan
examplein thissection to illustrate the statistical problems of flux determination and confidence
region estimation from measurements. The main emphasis of this section is to demonstrate the
strong non-linear statistical effectsthat are caused by large exchange fluxes and their mathemat-
ical treatment by non-linear rescaling.

Example network

Using the formal notation introduced in Part | the example network structure with the corre-
sponding carbon atom transitionsis given by

Vi: A — B Vi: B —- C
#uv — #uv; HWX —  #XW;

Vo: B — C V4. C — D
HwX —  #wX #yz — #yz,

i.e. V3 reverses the position of the two carbon atoms B; and B, involved while al other steps
leave positionsunchanged. A graphical network representationis shown in Part |. Wethen have
X = (b1, b, c1, )T, v = (v, vy, 077, v7) and v = (vi,v$,v$, vi). The system matrix
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,vi - P¢ andthelabel input matrix Y°,_, , vi* - PI™ for carbon

Zz’:l,..A vi P+ Zi:l,..,
flux balancing is consequently given by

= oy o RN
—vy" — Us . vy . U1
o o =
vy’ — U3 : vy d .Uy
,U—) ,U—) _,UF _ ,U—)
2 3 2 4 :
v3 vy : vy — v,

while the metabolite flux balances, unidirectionality of Vy, V3, V4 and the values for the chosen
free flux coordinates v, v, vX"Y are expressed by the combined constraint equation

1 =1 =1 .. . .. vl 0
11 =1|. . . . vhe 0
1 vhe 0
1 e 0
T T | pEoI =
L. pyeniodl e
I penoed et
1 . . ‘UZCh[O’l] cgch[o,l]

Thisleavesthree degreesof freedom for simulation, represented by thevaluesof ¢, ¢, M0,

Flux determination and exact confidence intervals

Supposethat the net flux v and thefractional labels b, ¢; have been measured. Theaim of flux
determination is the determination of values for the free fluxes v, v0®, X% that reproduce
these measured data. Assuming for simplicity that the substrate uptake v;” has been directly
measured as v;” = 1 with good precision (cf. the analysisin Part 1) we can concentrate on the
relation between (vy”, v§") and (b1, ¢;). From Part | the free fluxes v, vX" corresponding to
given values of b, ¢; are computed as

29 29 — - —_ _ib—_lul__l N
(L2_>7 L;) =7 ! (blacl) = ( (;:lc_ll)(cl_bfl) ) cll_bbll )
(V03 = ¢ (vvs) = ( vy —vi , min(vy,v5))

which gives rise to the one-to-one mappings v and ¢.
In practice only noisy measurementsof b, , ¢; areavailable. Denoting the measurement errors
by ey, . respectively, the estimated fluxes based on noisy measurement data are given by

(B0, XM = ¢ oy (by + ey, 00 + ) (10)

Now the usual assumption of independent normally distributed errorswith expectation 0 and
variance o? ismade, i.e. (¢;,e.) € N (0,0% - 1) (with 1 denoting the unit matrix). Given some
specified confidence level o we consider the circle Cy_, (b, ¢;) centred at (b, ¢; ) with radius
VX3 (1 — ) (where x2 denotes the chi-square distribution with » degrees of freedom):

01—04 (blacl) = {(bl +ép, 01+ 50) |€Z + 53 < X% (1 - a)}

By definition of x2 the probability of the event that (b, + 3, ¢1 + ¢.) liesinthiscircleis exactly
[Arnold (1990)]
P [(bl + Ep, C1 + Ec) € Cl—a (bl,cl)] =1—-q«

6



Applying the mapping ¢~ o v~! on both sides of the €-symbol and using Equation (10) we get
Pl(o3%, 05" € 67 oy (Croa (bryer))] =1 =@,

i.e. thecircles pre-imageunder ¢! o 47! in the (v]®, v}") space represents an exact (1 — a)-
confidence region for the estimated parameters:

Conf 1, (3%, v3") = ¢ 0y~ (Cia (br, 1))

Clearly, in practice the computation of confidence regions must be performed around the
estimated fluxes (95%, 3°") because the true values are not available. However, all arguments
remain valid when the circles are centred at the measured values (by + e3, ¢1 + &.).

Properties of the exact confidence intervals

Figure 1a shows some representatively chosen circles C_,, (b1, ¢;) for 1 — a =90% and o* =
0.0082 (i.e. 0.8 % measurement error) inthe (b, ¢;) plane. Figure 1b thenillustrateshow these
circles are mapped onto the (v)®, v3") plane by ¢~! o y~1. A close inspection of these exact
confidence regions Conf ; _, (v5®, v¥*") leads to the following conclusions:

1. Theexact confidenceregionsareirregularly shaped so that for higher-dimensional systems
their geometric description will become increasingly difficult.

2. In most cases the net flux v5* is estimated within reasonable tolerance. In the worst case
being a simultaneously large exchange flux vX*" it is still much better determined than the
corresponding exchange flux.

3. Only small exchange fluxes v}*" can be determined with narrow confidenceintervalsfrom
measurementswhile large exchanges are highly sensitive with respect to measurement er-
rors.

4. For large exchange fluxes the exact confidence interval may include the possibility of an
infinitely large flux which will lead to severe problems for a general numerical solution.

Summarizing, exchangefluxes canin most situationsonly be estimated within an order of magni-
tudewhile net fluxesremain always (comparatively) better determined. However, the tolerances
may still be sufficient to distinguish large exchange fluxes from small ones. Thisisvaluablein-
formation for metabolic modelling.

Linearized statistics

Duetothegenerally irregular shape of the exact non-linear confidence regions an approximation
hasto be found that comes close to the exact region and at the same time can be described with
asmall set of practically meaningful parameters. A similar situation is known from the char-
acterization of probability distributions where expectations and covariances are often taken as
characteristic parameters while higher order moments are neglected.

The usual approach for obtaining an approximation to Conf ; _, (v)%, v3") is by computing
alinearization of ' o v~ around (b1, ¢;), i.€.

oy~! L _ d(ptont
Lln((bb1 C:) (by +ep,c1+6.) = oy 1(61,01)+@—ﬁ>>)(51,c1)' ( ?;) .1



Replacing the original non-linear mapping ¢—* o v~! by this approximation the exact confi-
dence region around (v5®, vX") can be approximated by the elliptical region:

Conf 1 o (], v3®) & Linf, "7 (Cra (br,er)) (12)

Sinceéellipsoidscan be conveniently described by their centreand their principal axes[Press (1988)]

this approximation can be practically interpreted even for higher-dimensional models.

Figure 1c shows the results for the circles of Figure 1a. It turns out that the approximation
is practically uselessin case of large exchange fluxes »}*". Compared with the exact confidence
regionsthe approximating ellipses are then displaced towardslow exchangefluxes. For practical
application this result is disappointing because the linearization leads to a significantly reduced
ability to distinguish large exchange fluxes from small ones.

To explain the mathematical reason for this poor result we reduce the dimension by fixing
the rather well determined flux v0® to its estimated value and focus upon the variation of vX°".
Figure 2athen illustrates the dependency of ¢; on v} for fixed vi®. Ashas already been poi nted
out in Part |, the values of b, ¢; tend to alimit value for large exchange fluxes. Consequently,
the labelling state becomes more and more insensitive with respect to vX" when v¥*" — oc. The
tangent line to the curves (i.e. the linearization) in Figure 2athen tendsto a horizontal line. This
lineisan extremely poor global approximation to the original curve over the whole value range
[0, oc].

Thus the reason for the observed poor approximation results is that the linear approxima-
tion of the function ¢~' o v~! given by Equation (11) is not able to follow the curvature of the
original function well enough. In general, from the theory of non-linear statistics it is known
[Pazman (1993)] that the approximation quality of a linearization depends on the curvature of
the linearized function. Functionswith low curvature (so called “flat models’ [Pazman (1993)])
tend to exhibit good linearization results.

Non-linear rescaling

In order to obtain a better approximation for the exact confidence region Conf ; _, (v5®, v¥") a
non-linear transformation of the mapping ¢~ o v~! must be found that reduces the curvature
and thus is more suitable for linearization. Our solution is given by the compactification map-
ping between the application flux coordinate v¥*" € [0, oo] and the numerical flux coordinate
vX0I < 10 1] that has already been introduced in Part | and Equation (2). Using 3 = v/® = |
(as in Part ) aflux estimate in the new coordinate system is obtained by

(65, 030H) = (gl =1 o g~ 0 471 (by + 3,01 + &)
with (o)1 (o0, U?"h) = (vh®, v3N/(1 + v3N))

The dependency of ¢; on vXM%Y ¢ [0, 1] for fixed v0¥ is shown in Figure 2b. Obviously this
mapping has an extremely low curvature and thusis much better linearizable than that shownin
Figure 2a. Consequently, the tangent line to this curve will produce a good approximation over

the complete value range [0, 1] of v},
[0,1]
Of course, theapproximated elliptical confidenceregion based onthelinearization Li nzd’ ))
(computed analogously to Equations (11) and (12)) is situated in the (v]¢, vx"°!) space. In or-
der to compare the quality of this approximati on with that of Equation (12) thiselliptical confi-
denceregion must betransformed back to the (v5%, v5") spacevias’ ™. Theresult shownin Fig-

ure 1d turnsout to correspond extremely wel | with the exact confidenceregion Conf ; _, (v5®, vX°")

8
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for all circlesin Figure 1al Therefore the non-linear coordinate change to the numerical flux
coordinates enables an amost exact region to be computed that is defined by the characteristic
geometric parameters of an ellipse together with the known transformation ¢,

In many application casesit is sufficient to compute approximative confidence intervals for
single parametersonly. Assuming that aconfidenceinterval [6XM%% — A $xM0U . A] has been
computed in the (v¥, vX*"%) space using the methods presented below it is easily transformed

back via 4" to the unsymmetrical interval

/8 lﬁ;(Ch[O,l] _ A /3 ’ﬁ;(Ch[O,l] _I_ A
1 — (‘ﬁ;(Ch[O,l] _ A)’ 1 — (lﬁ;(ch[o,l] + A)

(13)

Thisshould at |east enablethe order of magnitude of vX*" to be determined. The general message
of the studied example is that flux estimation as well as the computation of statistical quality
measures should always be performed in a suitable coordinate system like (v, vy~ An
interpretation in the (v, v**") system (which is more convenient for practical purposes) can
then be obtained by back-transformation using ¢>4.

Flux Estimation

The main difference between the general situation and the example is that redundant measure-
ment information may now be available. The determination of theintracellular fluxesthen poses
aninverse problem associated with the general model Equations(3), (6), (7) that isusually solved
by aleast squares approach [Bates (1988), Seber (1989)].

The general theory of flux estimation and the computation of statistical quality measuresis
developed in this and the following section. For that purpose al concepts presented in the pre-
ceding section haveto be generalized appropriately. The mathematical foundation for thisgener-
alizationisgiven by thefact that the compactification method devel oped for the ssimple example
can be readily taken over to the general case. The mathematically rather involved proof can be
taken from [Wiechert (1995c¢)].

Measurement equations

The relation between the fluxes and labelling fractions predicted by the model and their noisy
measurementsis given by the measurement equations that we develop now. To start with, two
measurement matricesM,, (for net fluxes) and M,, (for labels) areintroduced that indicatewhich
coordinate entries of v™ and x are actually measured.

In the example the extracellular net flux v and the fractional labels b, ¢; (enumerated as
x; and x3) are assumed to be measured, which is expressed by the matrices

Mo= (1) = (D)

If no measurement noiseis present the resulting vectors of measured net fluxes and measured
label fractions are givenby w = M, - v"® andy = M, - x. Denoting the corresponding
measurement noise vectors by ey, and ¢, and keeping in mind that v™® = v~ — v weend up



with two measurement equations:

the flux measurement equation w = My, (VT =VvT) 4 oew
V—)
= (My,-M,) - ( ve ) + Ew (14
the label measurement equation y = M, . X + &

Additionally, the statistical properties of the measurements have to be expressed. The usual as-
sumption is that the noise terms ey, ¢, are normally distributed with expectation vector 0 and
covariance matrices X, , Xy :
ew = N(0,Xyw)
ey = N (07 EY)
In the example the measurements were assumed to be independently distributed with the same

variance o2 for the label measurements and some other variance 72 for the flux measurement.
The associated covariance matrices are:

9 o .
Ew = (T ) and Ey = < ' 0_2 )
It should be noticed that the diagonal shape need not always be the case because the measure-

ments can exhibit correl ations which may not be negligible. Anin depth discussion of this prob-
lem and the choice of appropriate covariance matrices can be found in [Wiechert (1995c)].

(15)

Sum of squares function

The discrepancy between the system state predicted by the model and the measured values is
quantitated by the familiar sum of squares function. In order to obtain a proper weighting of
measurement errors the covariance matrices must be incorporated within this function by using
a squared weighted norm that is defined now.

Since acovariance matrix X is always square, symmetric, and positively definite, its square
root v/ can be computed (e.g. by using a Cholesky factorization [Horn (1985)]) satisfying the

condition v - v/S = 3. The squared weighted norm associated with a covariance matrix 3.
enables a measurement error vector ¢ to be appropriately weighted as:

ez =" B e= (VD )T (VE ¢

Using this notation the sum of squaresfunctionisgivenin termsof the natural flux variables
v, v andthelabelling state x by:

£V VLX) = |lw =My - (v7 = vO)llg, + Iy = My x5, (16)

In the example we have the weighted sum of squares

o= () () (2)

where sy, c., €, denote the respective measurement errorsfor by, ¢;, v,

10



Least squares estimation

The general |east squares estimate (which equal s the maximum likelihood estimate for normally
distributed errors [Seber (1989)]) is now obtained by constrained minimization of the sum of
squares function from Equation (16):

minimizex (v7,v©,x) an
subject to the constraints given by Equations (3), (6) and (7)

Thisposes aquadratic minimization problem with non-linear equality and inequality constraints.

Aiming at asimplified representation of this problem the mappings ¥ from Equation (9) and
I' from Equation (8) can be used. All equality constraints are thereby reduced by parametrizing
their solution space with n"®. Replacing the corresponding terms in Equation (14) the mini-
mization problem from Equation (17) transforms to:

minimize x(n") = |lw—(My,—M,)- &0 ®0¥0 W (ne)|2
+ |y - M, -Tod o ®04 o U ()3, (18)

subject to the inequality constraints U - ¥ (n®) > u

Some details on the numerical solution of thislinearly constrained non-linear minimization
problem are given in Appendix B. Having computed an estimate 1", the corresponding esti-
mates for fluxes in the application coordinate system and the labelling state can be computed

from
~ net

vhet [0.] free . v
oxeh =07 oW (n"™) and x=Tod® [ . (29)

A%

Statistical Analysis

Having computed 1™ its statistical quality must be judged. To this end statistical quality mea-
sureslikethe output and parameter sensitivities, the covariance matrix and parameter confidence
regions must be derived. Since n™® isactually composed from coordinate entries of the numer-
ical flux vectors the model linearization in the numerical flux coordinate space as described for
the simple example will lead to good approximation results. Thus standard procedures based on
linear regression theory [Pazman (1993)] are applicable.

Satistical notation

To obtain a very compact notation of the constrained least squares problem (18) we introduce
the following new symbols:

1. The parameter vector n™ isreplaced by © whichin regression theory isthe familiar sym-
bol for the estimated parameter vector.

2. The combined measured output vector » and its covariance matrix X are represented by

w Yo O
= (V) 2=y
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3. Theoveral input-output function is then given by (cf. Equation (18))

_ [ (My,—M,): ®002Y0U(0)
F(e)= ( M, Tod o CI)go’l] oV (0) (20)
4. Finallywith A = U-K™ anda = u— U k™ (cf. Equation 9) theinequality constraints
arewritten as
A-O>a . (21)

With these abbreviations we end up with the general non-linear constrained regression model:
n=F(0)+¢ subjectto A-0>a and € N(0,X) . (22)

The corresponding least squares estimator is denoted as usual by ©.

Satistical quality measures

The key to the computation of statistical quality measures for the estimated parameter O isthe
evaluation of the model Jacobian matrix F/90 (©), i.e. the linear approximation of the non-
linear model Equation (22) around ©. Thismodel linearization iswell known as the (absolute)
output sensitivity matrix of the system [Chatterjee (1988)]. The output sensitivity reveals how
the measured state variables will be influenced by adifferential changein ©. More details con-
cerning its computation can be taken from Appendix B. Having once linearized the model, all
theresultsfrom linear statistical theory can be (approximately) applied [Pazman (1993)]. In par-
ticular we compute the following quantities:

1. For aproper linear approximation of the estimator’s statistical propertiesthe output sensi-
tivities are weighted by the measurement covariance matrices to obtain the weighted out-
put sensitivity matrix:

A -1 OF .
Sensi ¥ (0)=VE - - (0)
00

2. From the weighted output sensitivity at © the estimator’s covariance matrix is approxi-

mated:

Cov(0) ~ |Sensy™ (0)T - Sensy™ (0)

In particular the parameter variance estimatesare given by thediagonal vector, i.e. Var ((3)) =
diag Cov (O).

3. Elliptical parameter confidence regionsin the ©-space for a given confidence level a can

A

now be computed from Cov (O) by:
Confy o (0) ~ {O[(O—-6)"-Cov(0)™"(0-0)< \jme(1—a)} (V)
A confidence interval for asingle parameter O, is given by

[0, —A,0,+A] with A=y}(1—-a) Var (6, . (24)

4. Finaly, theweighted parameter sensitivity matrix tellsus how the parameter estimatesare
influenced by achangein some measured value. It is obtained by neglecting second order
terms as )

Sensy | a2 Cov (0) - Senst ¥ (0)7 .
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All formulas have been given for the free parameter estimator © in the numerical flux coordi-
nate system. Clearly, these results can be immediately transferred to results on v", " using
Equation (19). This produces confidence intervalsfor al interesting parameters in the system.
The numerically stable computation of these quantities by a singular value decompositionis de-

scribed in [Press (1988)].

Analysisof theCentral M etabolism of Corynebacterium glutam-
icum

The complex data set discussed below is taken from [Marx (1996)]. It consists of the directly
measured extracel lular fluxesand fractional labelling val uesfrom acontinuous cul ture of Corynebac-
terium glutamicum under lysine-producing conditions. The underlying metabolic network with
the flux names is presented in Figure 3a and the corresponding carbon atom transitions can be
taken from Appendix A. An important addition compared to [Marx (1996)] is that the '*C en-
richments of the ribose-5-phosphate pool have meanwhile become available from the ribonu-
cleotidesisolated from RNA. The details of the preparation will be presented el sewhere.

A very important fact with respect to the investigation of bidirectional reaction stepsis that
[1-'*C] glucose was taken as a substrate. The labelled carbon atom isimmediately split off as
CO, inthe oxidative pentose phosphate pathway. Thuswhen all reaction steps are assumed to be
unidirectional no '*C enrichment is expected in the intermediates of the non-oxidative pentose
phosphate pathway. However high fractional labelling values were measured in erythrose-4-
phosphate and the pentose-phosphate pools (see Table I1). Thisis already evidencefor the exis-
tence of significant exchange fluxes in the pentose phosphate pathway.

Whereas in the origina publication [Marx (1996)] no statistical data were given, the newly
developed software tools allowed the statistical quality of the flux estimates to be investigated
for thefirst time. Moreover, the additionally avail able measurements were used for further im-
provement of the estimate’s statistical quality. Since the focus of this contribution is on mod-
elling and dataanalysisthe biological implicationsof thisexperiment are not discussed here (see
[Marx (1996)]).

Metabolic network and assumptions

The metabolic network model from Figure 3adeveloped by us has the following most important
features:

e Some reaction steps are assumed to be unidirectional. Those steps which are assumed to
be bidirectional are labelled with two valuesin Figure 3b.

e Since at this stage we cannot discriminate between fluxes involving the malate and the
oxal oacetate pool, respectively, all anaplerotic carboxylation reactions are represented by
one single bidirectional reaction step from PEP/Pyr to Mal/OAA. It must be pointed out
that this local simplification does not influence the other flux estimates in the system as
has been shown in [Wiechert (1995a)] by algebraic identifiability analysis.

e Incontrastto[Marx (1996)] the pentose-phosphate pool s (ribul ose-5-phosphate, xylul ose-
5-phosphate, ribose-5-phosphate) are now merged together in one pool by rapid equilib-
rium assumptions (cf. [Wiechert (1996b)]). Thisis probably justified because, with the
new ribose-5-phosphate measurementsavail abl e, flux estimati onsshowing high exchanges
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between the three pentose-5-phosphate pool sconsistently led to thelowest sum-of-squares
deviation.

e It should be noticed that lysineis produced viatwo parallel pathwaysin Corynebacterium
glutamicum [Sonntag (1993)]. These are the diaminopimelate dehydrogenase pathway
(ddh) and the succinyl-diaminopi mel atedehydrogenase pathway (succ-dap) which aredis-
tinguished by the different fates of the carbon atoms.

Measured data and flux estimation

The substrate uptake, the biomass effluxes and the product formation of CO, and lysine were
directly measured as presented in Table I. All measured fractional carbon enrichments can be
taken from Table .

The metabolite flux balances now leave three degrees of freedom for net fluxes. Asthe free
net fluxes we have chosen:

ppp®  in the oxidative pentose phosphate pathway
gc® intheglyoxylate cycle
Ipi®  inthe ddh lysine production pathway

The set of free fluxesis completed by all exchange fluxes of reaction steps that are assumed to
be bidirectiondl, i.e.

pPP;™", pPP;™, pppi™  in the pentose phosphate pathway

gly, glyx" in glycolysis
cace" in the citric acid cycle
ac<n in the anaplerotic section

Based on thisdata extensive simulation studies and arepeated offset of the parameter-fitting
algorithm led to a uniquely determined minimum of the least squares problem (18). The local
optimality has been verified graphically and by by inspecting the computed gradient of « (6).
Moreover, no constraints became active for the computed flux estimates as presented in Figure
3b, where al fluxes are normalized to a substrate uptake rate of 100 %.

In Tablel1l the resulting estimates for the free fluxes together with their unsymmetrical 90%
single parameter confidence intervals computed from Equations (24) and (13) are given. The
parameter 3 = 1.0 (corresponding to 100 % substrate uptake) was used for the flux transforma-
tion <I>[,§"1] . Thevariance estimates obtained for substrate uptake, product formation and biomass
effluxes are omitted in Table 111 for the sake of brevity. Ascan be seenin Tablel their estimated
values are amost identical to the measured values considering the given measurement standard
deviation. Moreover, each net flux estimate turned out to be amost uncorrelated to all other net
flux estimates. For that reason the variances of all non-free net fluxes can be easily computed
from Equation (19) because variances have simply to be wheighted with their squared linear co-
efficients and then summed up. For this reason all linearly dependent fluxes have confidence
regions in the same order of magnitude as the involved free net fluxes. Because this paper con-
centrateson the statistically critical aspectswe now focus on the analysisof theintracellular free
fluxes.

Analysis of the covariance matrix

As becomesclear from Table |11 all free net fluxes are well determined from the measured data
with the largest confidence interval in ppp?™®. Of course the absolute size of the confidence rea-
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gions has to be compared here because small fluxes (like gc®) can in general not be estimated
with smaller confidence regions than large fluxes. Contrastingly, the exchange fluxes can only
be given within their order of magnitude. Compared with the corresponding net fluxes the ex-
change fluxesin Gly; and PPP, can be considered close to equilibrium while those in PPP3,
PPP, and AC are medium sized and Glyz, CAC, israther low.

The next question is whether there are correlations between the flux estimates, which of
course hasto be decided in the numerical flux coordinate system wherethelinearization of Equa-
tion (22) takesplace. A detailed insight into these correlations can be achieved by an inspection
of the parameter confidence ellipsoid as given by Equation (23). Its longest principal axesin
the ©-space are reproduced in Table 1V. The axislength varieswithin three orders of magnitude
with two exceptionally long axes. The longest axisis amost completely determined by the en-
triesfor gl and ppp™®, i.e. these estimates are highly correlated. However, the variationin
the gly“"®¥ direction is much larger, which leads to the large confidence interval for gly "
while that for ppp?® is substantially smaller. The second long axisreveals asimilar dependency
between glyX%Y and ac*M®1 where now gly:*®¥ is not well determined. All other axes are
at least one order of magnitude shorter, i.e. not critical. A further group of correlated fluxes can
be identified with pppX®¥, pppel® pppil® (j.e. the pentose phosphate exchange fluxes).

The principal component analysis proves that the covariance matrix is not singular, i.e. the
required information for a complete flux determination isin principle contained in the data set.
However, from a statistical viewpoint thisinformation is not sufficient to estimate gly"®¥ and
glyx"0Y with good statistical quality.

Finally, it is of some interest to find out which measured values influence the estimates of
those fluxes with the largest confidence intervals. A closer ook at the parameter sensitivity
matrix computed by Equation (23) (not shown here) reveals that gly:"°! and ppp?® are both
strongly influenced by p5p, , gap, , gap, whilegly™ and ac**"®4 are bothinfluenced by gap, , gaps, lys;.
Moreover, the respective sensitivitiesare almost linearly dependent which explainsthe high cor-
relations. Finally, the occurring parameter sensitivities with respect to the pentose-phosphate
label stress the importance of measuring these pools.

Error analysis

An in-depth analysis of the discrepancy between the flux and labelling state predicted by the
model and the measured values (i.e. the residuals) would exceed the scope of this contribution.
However, all methods devel oped for linear models [van Heijden (1994a), van Heijden (1994b)]
areapplicable. Only ashort discussion of the most important factsisgiven here. Other statistical
methods (e.g. for testing model validity or finding gross measurement errors) would exceed the
scope of thiscontribution (see[Wang (1983), Vallino (1991), van Heijden (1994a), van Heijden (1994b)]).

As afact, the x? test for the goodness of fit [Pazman (1993)] fails (asis nearly always the
case for biological experiments). The computed sum of squaresis 137 while 25 istolerable for
90% confidence (with 40-23=17 degrees of freedom). The reason might beawrong model struc-
ture, abadly quantitated measurement error or gross measurement errors [van Heijden (1994a),
Wiechert (1995c)]. Tables| and Il show that by far the major contribution to the sum of squares
isgiven by the deviations of lys, (46.0), akg, (25.1), co2, (17.3), akg, (8.7), akg, (7.7) and lys,
(7.2). Omitting these values already would reduce the sum of squaresto 25.0. Thus gross mea-
surement errors might be the case. On the other hand, the measurement standard deviations may
be given too optimistically. Doubling them would reduce the sum of squares by afactor of four
at the cost of doubled parameter confidence intervals.

In general themodel fits much better in the glycolysisand pentose phosphate pathway thanin
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the other sections of the metabolic network. Systematic measurement errorsin thecitric acid cy-
clepools(in particular inthelysine and o-ketogl utarate | abel s) must theref ore be sought. Indeed
these pools are strongly influenced by the glutamate pool which has an extremely high intracel-
[ular concentration of approximately 160-200 mM [Schrumpf (1995)]. Thus the duration of the
experiment has to be sufficiently long to compensate the labelling capacity effects of this pool
(see [Wiechert (1995c), Wiechert (1996a)] for an in-depth discussion of this problem). Anim-
mediate consequence of this observation is that in the future carbon labelling experiments with
Corynebacterium glutamicum will be extended to 5 cell residence timesin the bioreactor. In-
deed the fit for arecently performed sequel experiment that will be published elsewhere passed
the y? test.

Discussion and Conclusions

The importance of bidirectional fluxes

The key concept of exchange fluxes has already been stressed in Part |. From the achieved ex-
perimental results another example of the influence of bidirectional reaction steps can now be
given. In most previous investigations bidirectional reaction steps could not be considered to a
large extent because little labelling data was available. In particular the glycolysis and pentose
phosphate pathway reactions have been frequently assumed to be unidirectional [Portais (1993),
Sharfstein (1994), Rollin (1995)]. In this situation glycolysis and the pentose phosphate path-
way can be essentially reduced to two parallel reaction steps

Gly: 3Glu — 6Pyr
PPP: 3Glu — 5GAP+3CO02

with net fluxes gly™ = gly!™ /3 and ppp™ = ppp}®/3. Ascan be easily shown theratio of these
fluxes can then be ssimply calculated from gap, by using the formula:

PPPI® _ 3 —6gap

gy’ 5gap,

Including the biomass effluxes and the natural '*C enrichment of 1.13% resultsin a more com-
plicated formula (not given here) but does not lead to significantly different results. From this
extended formula and the measured data (Table 11) we calculate ppp®/gly’™ = 1.0 with a 90
% confidenceinterval of +£2%. Thisis asignificant difference of 200 % to the flux ratio of 2.0
computed from Figure 3Db!

Thus, if no further measurement datawould be available the simplified view would produce
wrong but statistically well determined results! Of course if the whole data set is used to fit the
simplified model it turns out that the unidirectional model cannot explain the measured pentose
phosphate pathway labelling. This illustrates how the availability of redundant measurement
data enables the validity of a given model to be tested. The example stresses once more that
bidirectional reaction steps are akey concept for the evaluation of carbon labelling experiments.
Significantly biased resultswill be produced if they are not considered.

Flux estimation from labelling data

This contribution proves that the carbon labelling technique enables al stationary net fluxesin
acomplex reaction network to be quantified and at the same time also the order of magnitude of
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most exchangefluxes. To thisend, the availability of alarge amount of high-precision fractional
labelling measurements is of great importance for estimating all parameters with reasonably
small confidence intervals. No assumptions about the stoichiometry of the energy metabolism
wererequired for flux determination. On the contrary, such parameterscan now be derived from
the estimated fluxes.

On the other hand, due to the inherent non-linearities of the carbon label flux balance equa-
tions the determination and statistical analysis of flux estimates requires highly sophisticated
mathematical toolsthat exploit the special structure of such systems. Only the parameter-fitting
approachiscurrently suited for eval uating such complex datasetswhile explicit cal culationsand
graphical displays are only applicable to certain subproblems.

Therequired numerical methodsfor treating the non-linear problemshave been developedin
thiscontribution and successfully applied to acomplex experimental dataset. The numerical and
statistical problems arising have been exposed and appropriately solved. All algorithms have
been implemented within aflexible softwareframework for flux analysis. Becauseall thosetools
are available now, flux estimation from carbon |abelling experiments has reached the same state
of maturity as metabolite flux balancing from a computational and statistical viewpoint.

Further work

This contribution focused on the estimation of confidence intervals and the analysis of the co-
variance matrix for the estimated parameters while other tools of regression analysis were only
briefly discussed. Clearly, al established linear methods for identifying gross measurement or
modelling errors [Wang (1983), Chatterjee (1988), van Heijden (19944), van Heijden (1994b)]
can be readily extended to carbon labelling systems because our statistical analysisisessentially
based on a special linearizing transformation.

Another question of great practical interest is that of choosing an input substrate (or even
amixture of differently labelled substrates) that maximizes the obtained information about the
intracellular fluxes. Thistypical problem of optimal experimental design is usually solved on
the basis of the covariance matrix Cov © [Pazman (1986)]. Further work will concentrate on an
improved estimation of the pentose phosphate pathway influx ppp}® and the glycolysisexchange
fluxes g|y>1<ch[0,1] 7 gIYQCh[O’l] .

A problem that has not yet been extensively treated is the fine-tuning of the transformation
parameter 3 in Equation (2) that influences the goodness of the linearization approximation for
the exact confidence intervals. Although this approximation turned out to be rather insensitive
with respect to 3 we are developing a numerical method for an optimal a posteriori choice of
this constant.

Finally, asource of information that has not been used in this framework isisotopomer mea-
surements|[Wiechert (1995c), Wiechert (1996a)] that can be easily obtained with the experimen-
tal technique presentedin[Marx (1996)]. For agiven network thisleadsto amuch larger amount
of measurement data while leaving the number of parameters in the system unchanged. It was
shown in [Wiechert (1996a)] that isotopomer measurements have the potential for identifying
even more fluxes in metabolic networks. Fortunately, the framework presented above can be
readily extended toisotopomer networksusing the conceptsand algorithmspresentedin [Wiechert (1995c)].
To this end only one higher order term has to be added to the carbon labelling Equations (3).

A further question that is of great interest for the mechanistic modelling of metabolic net-
works using concepts from enzyme kinetics is the significance of exchange fluxes for the reg-
ulation of metabolism. In particular the question has to be answered whether a large exchange
flux permits one to an enzymatic step as non-rate-controlling.
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Appendix A: Network Structure of Corynebacterium glutam-

icum

The carbon atom transitions of the metabolic network shown in Figure 3 are subsequently given.
Thetrivial transitions of biomass effluxes are not given here (cf. Table 1). Using the formal no-
tation introduced in the appendix of Part | the remaining reaction steps are:

Upt :

Glyl:
Gly2:
Gly3:
PPP1:
PPP2 :
PPP3 :
PPP4 :
CAC1:
CAC2:

CAC3:

CACA4A:

CAC4B:

GC1

GCz2:

AC:

LP1A:

LP1B:

LP2:

Glu
#ABCDEF
F6P
#ABCDEF
G6P
#ABCDEF
GAP
#ABC
G6P
#ABCDEF
P5P
#ABCDE
GAP
#ABC
P5P
#ABCDE
Pyr

#abc

ICit
#ABCDEF
AKG
#ABCDE
Fum
#ABCD
Fum
#ABCD
ICit
#ABCDEF
GlyOx
#AB

PYR
#ABC
OAA
#ABCD
OAA
#ABCD
OAA
#ABCD

+
+

+ 4+ + + + + o+

+ 4+ + + + o+ + o+

GAP
#abc

P5P
#abcde
S7P
#abcdefg
E4P
#abcd
OAA
#ABCD

AcCoA
#ab
Co2
#a
Pyr
#abc
Pyr
#abc
Pyr
#abc

N A A A S S S A N S e A S S S A R A

G6P
#ABCDEF
G6P
#ABCDEF
GAP
#CBA
Pyr
#ABC
CO2

#A

S7P
#ABabcde
E4P
#defg
GAP
#CDE
ICit
#DCBAch
AKG
#ABCEF
Fum
#BCDE
OAA
#ABCD
OAA
#DCBA
GlyOx
#AB
OAA
#ABba
OAA
#ABCa
Lys
#ABCDchb
Lys
#abcDCB
Lys
#ABCDcb

+
+

+

+ 4+ F 4+ F A+ +F

+ 4+ + + 4+ +

PYR
#abc

GAP
#DEF

P5P
#BCDEF
GAP
#CDE
F6P
#abcABC
F6P
#ABabcd
CcOo2

#Ha

CcOo2

#D

CcOo2

#A

Fum
#CDEF

CcOo2
#a
CcO2
#A
CcO2
#a

Those steps that are assumed to be unidirectional can be taken from Figure 3. Complete
scrambling was assumed for the fumarase reactions CAC4A and CAC4B and lycine production
viathe succ-dap pathway (LP1A and LP1B).
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Appendix B: Computational Details

All computational methods in this contribution have been implemented within a universal soft-
ware framework for flux analysis written in C++ [Wiechert (1994)]. Its first component is the
textual input compiler described in the appendix of Part I. For incorporating measured data, this
textual input format has been appropriately augmented. In this appendix some technical details
on the implemented algorithms for simulation and computation of the flux estimates are given.
More information on the programs can be obtained from the authors.

Solving the model equations

The linear constraint Equations (6) are treated by using a numerically stable singular value de-
composition. Clearly, this has to be done only once for a given model structure. When incon-
sistencies or indeterminacies occur in the constraint equations this can be immediately detected
from the singular values [Press (1988)]. It has not been attempted to automate the finding of
free fluxes because according to experience the program user usually has has a suitable intuitive
suggestion (see the choice of free fluxesin the examples).

Solving the carbon isotope Equations (3) is substantially more complicated because this has
to be done in each iteration step of the parameter-fitting algorithm. Unfortunately, it can be
proven that the systemmatrix (>, v;” - P> + > . v - P ) becomesmore and moreill condi-
tioned when exchange fluxes tend to infinity (i.e. v:"%Y — 1). It was explained in Part | that
this situation may well be expected and data analysis for other experiments showed that thisre-
ally happens. Due to the poor condition neither QR decomposition [Horn (1985)] nor iterative
methods (like the Gauss Seidel iteration [Hackbusch (1993)] suggested in [Zupke (1994)]) are
then appropriate.

We solved the problem by an appropriate preconditioning of the system matrix using an idea
introduced in [Schuster (1992)]. Moreover, thistechniqueis also used for solving the equations
“atinfinity”. Thismathematically rather involved techniquewould exceed the scope of thiscon-
tribution. More details can be taken from [Wiechert (1995c), Siefke (1996)]. After precondi-
tioning both QR decomposition and iterative methods are applicable. While QR decomposition
turned out to be much faster for theinitial computation step of a parameter-fitting run, an itera-
tive refinement requires only a few steps when flux parameters are only slightly changed in the
course of the optimization run. Exploiting the sparsity of the occurring matrices led to a fur-
ther speed up of the iterative solution. For these reasons the solution algorithm is automatically
switched within our implementation based on a cost estimation.

Differentiating the model equations

The key to fast parameter-fitting algorithms as well as linearized statistical analysisis the effi-
cient computation of the model’s Jacobian matrix, i.e. 9F /30 (6). According to Equation (20)
thismeans the derivation of My, - ® 0 @0 ¥ (©) and My, - I'o & 0 91?0 ¥ (©) with respect to
0. Clearly this can be achieved by applying the chain rule. While most incorporated derivatives
are computed straightforwardly, the derivation of I is obtained by implicit differentiation from
Equation (8) as:

-1
ox inp i
v = —(Zvi"-P?—l—Zv;_-P;_) -(P7 - x+ PP x")

J
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-1
aav); = - (va.PerZv;.P;) L PEx
This showsthat I' as well as its Jacobian can be computed using the same matrix factorization
(cf. Equation 8). Thusthe computing time for the derivativesis almost negligible.

As isthe case for the solution of the model equations, the sketched procedure for comput-
ing F /90 (0) isnot applicable when large or even infinite exchange fluxes occur because the
system matrix will then becomeill conditioned. Again a specially implemented preconditioner
solvesthe problem but cannot be explained herein detail (see[Wiechert (1995c), Siefke (1996)]).

Handling non-differentiable terms

The reader may have recognized that the transformation ® in Equation (1) is not differentiable
everywhere becausetermsof typev* = min (v, v*") areinvolved which are not differentiable
for v = v. Thismerely technical problem can be resolved by a differentiable approximation
of the minimum function. The key ideais that

1
min(v7,v7) == (v7 + 0" = v = v

2
Now the absolute value [v™ — v* | can be differentiably approximated by

v — v =1/ (v —ve) & \/('U" —ve)? 4 62

with a smoothing parameter 4. For 6 — 0 the approximation error becomes arbitrarily small.

For parameter estimation the minimum function is replaced by its approximation with area-
sonably small 4. The resulting flux estimate will be biased as an effect of the approximation.
However, this first guess will be sufficient for determining at least the sign of the involved net
fluxes. Knowing these signs the flux directions can be fixed by adding the constraints v > 0
or vi® < 0 to the inequalities (7). Afterwards § can be set to 0 so that the non-differentiable
points are removed from the set of feasible fluxes. The optimization algorithm described below
will then experience no difficulties.

Non-linear minimization algorithm

Thenon-linear constrained | east squares problem (18) isnumerically solved by using ahybridiza-
tion of the Levenberg-Marquardt approach for unconstrained parameter-fitting and the Sequen-
tial Quadratic Programming (SQP) approach for general constrained optimization [Fletcher (1987),
Boggs (1995)]. Thekey ideaof the SQP algorithmisto replacethe optimization problemlocally
by its second order Taylor approximation. With the Gauss-Newton approximation of the Hes-
sian asused in the Levenberg Marquardt algorithm [Fletcher (1987)] the approximative problem
around an initial guess © for the true minimum s

minimize k(AO) = ||F(0)+ Z£(0)- A0 — |}
subject to the constraints A - (0 + A®) > a

Thisquadratic problemis solved using anumerically stable code [ Goldfarb (1983)] to obtain
the constrained minimum A®. Then © + A istaken as the new guess which givesrise to an
iterative algorithm.
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Another key idea of the Levenberg-Marquardt algorithm is the maintenance of an elliptical
trust regionto prevent A® from becoming too large, which would result in aninadmissible Tay-
lor extrapolation [More (1983)]. Thistrust region approach is carried over to the hybrid code by
replacing the elliptical region by a rectangular region which can be expressed by another set of
linear inequality constraints. The detailswould exceed the scope of thiscontribution. Thereader
isreferred to [Wiechert (1995c¢), Siefke (1996)].

Asisthe case with unconstrained optimization, the SQP algorithm convergesto alocal opti-
mum which can be checked by verifying the so-called second order sufficient conditions[Boggs (1995)].
Restarting the algorithm with different starting values helps to ensure that the global optimum
has been found.

Satistical treatment of active inequality constraints

As was demonstrated in Part | the inequality constraints in the nonlinear statistical model of
Equation (22) must be strictly obeyed by the optimization procedure to obtain meaningful re-
sults. The reason for thisis that due to measurement errors the measured labels y may be out-
side the accessible labelling states of the system (see Figure 1a). In this situation the computed
estimator runs to the boundary of the feasible region A - © > a from Equation (21).

In the situation, where © lies on the boundary of the feasible region A - © > a the compu-
tation of statistical quality measures for O isadelicate problem that is currently not adequately
covered by statistical theory. A first practical approachfor treating this problemisnow outlined.
Assume for simplicity that only one constraint is given, i.e. A is atransposed vector. In most
casesthis equation will be of type vi™®Y = 0 or v*®1 = 1. Now consider the situation where
the parameter-fitting algorithm has run to the corresponding boundary plane,i.e. A - © = a.

In this situation it is advisable to take this equation for granted, i.e. the inequality constraint
isaposteriori replaced by theequality A - © = a. Thisequation can then also beincluded within
the equality constraints section of the model (i.e. Equation (6)) from the very start. Clearly this
reduces the degree of freedom by one but the problem reduced in thisway has exactly the same
flux solutions as the original problem.

Thisaposteriori procedure makesit possibleto removethoseinequality constraintsthat have
become active. Since all the others pose no problem theinequality constraints A - © > a can be
completely removed aposteriori from the problem formulation. Of course, thisad hoc procedure
deserves further statistical research which is currently going on. In particular the significance
of a constraint to be active should be statistically tested. This would exceed the scope of this
contribution (see[Wiechert (1995c)] for moredetails). Fortunately, activeinequality constraints
did not occur in the presented application example (although we frequently encountered them
with other experimental data sets).
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Figuresand Tables

A highquality cameraready copy of all Figuresand Tablesisattached seperately.
All Figuresare magnified by 200 %. The 100 % sized figureswill fit exactly into

one column of “Biotechnology & Bioengineering”.
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Table I: Measured and estimated extracel lular fluxesin C. glutamicum MH20-22B under lysine
producing conditions. All values are scaled to a substrate uptake rate of 100 % corresponding
to 1.49 mmol/(gTM - h). The biomass effluxes pyreffl,, edpeffl and lyseffl, are coupled to CO,
formation while p5Speffl, and pSpeffl, refixate CO,. The flux symbols can be taken from Figure
3a. All measuring errors were taken to be 2% except for CO, with 5%. The right column shows
the corresponding weighted deviation.

Table I1: Measured and estimated fractional |abels with assumed measurement errors depend-
ing on the quality of the corresponding NMR spectrum. The metabolite symbols can be taken
from Figure 3a. Labelled CO, was measured by mass spectrometry. The right column shows
the corresponding weighted deviation.

Table 111: Estimated values and 90% unsymmetric confidence intervals for the estimated free
fluxes.

TableV: Thelongest principal axes of the 1o-confidence ellipsoid. Only thelargest entries are
reproduced.
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Flux Measured

Estimated Assumed Weighted

value value standard deviation
[%0] [%0] error

Substrate uptake:
upt 100.0 98.7 2.000 -0.63
Biomass effluxes:
g6peffl 1.3 1.3 0.026 0.04
fepeffl 0.5 0.5 0.010 0.01
gapeffl 0.9 0.9 0.018 0.02
pyreffl, 18.0 18.0 0.360 0.37
pyreffl, 23.0 23.1 0.460 0.15
edpeffl 1.8 1.8 0.036 0.06
pSpeffl, 1.0 1.0 0.020 0.05
p5Speffl, 49 49 0.098 0.21
akgeffl, 7.0 7.0 0.140 0.07
akgeffl, 1.2 1.2 0.024 0.01
oaaeffl 11.6 11.6 0.232 0.17
Product formation:
lyseffl 18.3 18.5 0.370 0.40
co2effl 275.1 239.0 13.800 -2.62
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Carbon

Measured Estimated Assumed Weighted

atom value Vaue standard deviation
[%0] [%0] error
p5p, 12.6 125 0.2 -0.14
p5p, 29 2.8 0.5 -0.28
pP5p; 2.1 2.3 2.0 0.11
PSP, 1.5 2.1 0.5 1.28
p5p; 19.3 18.4 1.3 -0.67
edp, 2.0 3.0 1.0 1.01
eap, 3.6 2.1 1.0 -1.49
edp, 2.0 19 1.0 -0.08
edp, 16.7 15.5 2.0 -0.59
gap, 2.9 2.9 0.2 -0.11
gap, 2.6 25 0.1 -0.60
gap, 26.7 26.4 0.2 -1.65
pyr, 3.0 2.7 1.0 -0.33
pyr, 26.4 26.3 0.5 -0.20
akg, 24.1 225 0.3 -5.10
akg, 11.1 9.7 0.5 -2.78
akg, 28.1 26.3 0.6 -2.95
0aay 7.6 9.7 2.0 1.05
oaas 209 225 2.0 0.81
oaay 16.8 17.3 2.7 0.17
lys, 6.8 71 0.2 1.36
lys, 219 239 0.3 6.78
lys, 18.9 17.3 1.0 -1.63
lys, 22.2 24.9 1.0 2.69
lyss 5.6 5.3 0.3 -1.00
c02, 23.0 21.6 0.4 -4.16
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Flux  Estimated Estimated 90%
vaue  confidence
[%0] interval
ppp© 65.3 [53, 78]
gce 1.2 [ 0, 5]
Ip) 47 [ 3, 6]
gy 3132 [59, ]
glyx" 145 [ 0, 77]
pppseh 84.2 [51,137]
PP 57 [ 0, 18]
oo ok 11.0 [ 4, 19]
ac<n 304 [14, 53]
cage" 32 [ 0, 15]
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Figure 1. Comparison of different approximations for the exact 90 % confidence region of
(v, v in the example network from Part | (compareto Figure2bin Part 1): @) six 90 % confi-
denceregionsinthe (b;, ¢;) plane assuming ameasurement error of 0.008 (cf. Figure 2ain Part
1). b) the corresponding exact non-linear 90 % confidence regions obtained from the non-linear
mapping of the origina ci rclesviaqp’— o~~'. ¢) linearized elliptical 90 % confidence regions
obtained from alinearization of ¢=! oy~ inthe (vi¥, v3") space compared to the exact regions.
d) approximated 90 % confidence regions obtained from alinearization of ()1 0 ¢~

in the (vh®, v3"%1) space and subsequent back-transformation into the (vi®, vX") coordinate
system via 4"

Figure 2: Behaviour of the example system’s labelling state ¢, for fixed net flux v and a) in-
creasing vX", b) increasing vX*"®Y. For each case tangent lines and 90 % measurement confi-
denceintervals corresponding to ameasurement standard deviation of 0.008 aredrawn for small,
intermediate and large exchange values. The much lower curvature is apparent from b).

Figure 3: Network model for the central metabolism for Corynebacterium glutamicum: &) cho-
sen flux names and free net fluxes (shaded), b) determined net fluxes (boxes with corners) and
exchange fluxes (boxes with rounded corners) based on the data of Tables and . Biomass and
CO, effluxes (except for the ppp, step) are not shown for smplicity. Confidence intervals for
the flux estimatesas given in Table show that the glycolysisexchange fluxes are rather undeter-
mined. i.e. these values should be taken with care.
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Figure 3a
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Figure 3b
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