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Abstract. The quantitative knowledge of intracellular metabolic fluxes is of fundamental import-
ance for metabolic engineering. Under stationary conditions, standard measurement techniques in
combination with NMR labelling data present a rich source of information. A new method is in-
troduced to estimate all intracellular fluxes in central metabolism from this data. It is based on
13 isotope labels from extracted amino acids and a general mathematical model, that explains how
those labels are related to fluxes. Moreover the general applicability of the method is supported by
automatic generation of the large model equation systems and computer aided flux estimation. An
example is given by determining fluxes in Corynebacterium glutamicum.
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1. INTRODUCTION

1.1. Stationary Fluz Determination

One of the most important goals in biotechnology
is to develop systematic methods for yield impro-
vement of biosynthetic products (Bailey, 1991).
Clearly the in vivo determination of intracellular
physiological data can be of great profit for any
such method. This holds true for genetic manipu-
lations as well as for process and control enginee-
ring approaches.

This paper presents a powerful new method for
intracellular flux determination under stationary
conditions, that combines methods using standard
bioprocess measurements (Vallino and Stephano-
poulos, 1992) with such based on 3C labels (Mal-
loy et al., 1990). Tt solely relies on the structure
of the metabolic network (see. e.g. Fig. 3) and al-
lows to estimate all intracellular fluxes in central
metabolism. I.e. no assumptions about enzyme or
transport kinetics have to be made.

The method can be used to characterize different
microorganisms under varying physiological con-
ditions. Thereby it will serve as a valuable dia-
gnostic tool to evaluate the success of genetical
manipulations. Moreover the knowledge of sta-
tionary fluxes is necessary to apply the metabo-
lic design methods proposed by metabolic control
theory (Kaczer and Acerenza, 1993). Finally dy-
namic system models are usually ”built around”
a stationary state so that they must at least re-
produce the stationary flux data.
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Fig. 1. Types of measurement data used to determine

unknown intracellular fluxes: i) extracellular
fluxes, ii) fractional labelling of intracellular
metabolites.

1.2. Assumptions on the System

The sole assumptions made for stationary flux
analysis as presented in this paper are:

1. that the observed microbial system is in a
well defined stationary physiological state du-
ring the measurement procedure. This can be
achieved in a controlled continuous culture
inside a bioreactor.

2. that for the metabolic pathways of interest,
all relevant biochemical transformations are
known with respect to i) the involved enzy-
mes, ii) the fate of all carbon atoms within
each reaction step and iii) irreversibility in
vivo (in so far as this can safely be assumed).
For central metabolism this knowledge can be



taken from any biochemistry text book (com-
pare Fig. 3).

3. that enzymes cannot distinguish between dif-
ferent isotopically labelled metabolites with
respect to reaction rates. According to cur-
rent knowledge this is true for liquid phase
reaction systems.

These are quite weak assumptions compared with
the structural and kinetic assumptions to be made
for dynamic system modelling. Therefore flux de-
termination based on these assumptions is expec-
ted to produce reliable data sets that are rather
unprejudiced with respect to model assumptions.

1.3. Measurement Data

To compute all intracellular fluxes for a reasona-
ble complex metabolic network, as much measu-
rement data as possible has to be collected. This
must be done with non invasive techniques. Using
conventional bioreactor instrumentation, concen-
trations of substrates and products in the culture
medium as well as biomass concentration and gas
flows can be measured. From this data the fluxes
between the cell cytosol and the surrounding me-
dium can be computed by mass balancing. The
resulting fluxes are henceforth called the eztracel-
lular fluxes (see Fig. 1).

The number of significant extracellular fluxes is
usually not more than 10 (growth rate, substrate
uptake, product formation, Oy uptake, CO4 for-
mation, some byproducts, ammonium uptake). A
method for flux quantification in a complex me-
tabolic network that is solely based on this data
set was proposed in (Vallino and Stephanopoulos,
1992). However it turned out that some additional
assumptions are required to get a well determined
equation system for flux estimation from so few
data. In practice several enzymes were conside-
red inactive and the thermodynamic efficiency of
ATP generation from NADH was assumed.

The new approach for flux determination uses
NMR measurements of 13C isotope labels in addi-
tion to the standard extracellular flux data. The-
reby the amount of available system information
is significantly increased. Moreover it is possible
to determine not only net fluxes but also exchange
rates of reversible reactions (as will be shown in
section 3). The method is described in the follo-
wing sections together with an application to Co-
rynebacterium glutamicum.

2. EXPERIMENTAL SETUP

This section gives a short sketch of the experimen-
tal methods used to obtain the required measure-
ment data. More details will be published else-
where (Marx et al., 1995).

To achieve a well defined stationary physiological
state, cells are grown in continuous culture. Be-
cause labelled substrates are extremely expensive,
a small bioreactor with volume of 325 ml is used.
All relevant extracellular metabolite concentrati-
ons as well as gas flows are measured by using
standard instrumentation.

After reaching the physiological steady state, the
substrate is replaced by '3C labelled substrate.
From this moment on the '3C atoms become dis-
tributed all over the metabolic network until an
isotopic steady state is reached. However, most
intracellular intermediates are too weakly concen-
trated to become accurately detectable by NMR.
Therefore an alternative method to get labelling
data is used. It relies on the fact that metabolic
intermediates gradually become incorporated into
biomass with their labelling state remaining con-
served. When about 5 fermentor residence times
have been passed, about 99% of the biomass has
been exchanged by labelled material. This is the
time for harvesting.

A rich source of differently labelled cell compon-
ents is presented by the cell proteins, that are
therefore extracted and hydrolized. The resul-
ting amino acids are then purified preparatively
by FPLC. A small amount of such a concentra-
ted amino acid is sufficient to produce an NMR
signal. A close look to the biosynthesis of amino
acids shows, that most of them stem directly from
precursors in central metabolism. Thereby the in
vivo fractional labelling in many important inter-
mediates of central metabolism can be reconstruc-
ted.

3. A SIMPLE EXAMPLE

The principles of intracellular flux estimation from
the obtained '3C labels combined with the measu-
red extracellular fluxes are explained now. Before
formulating a general (but rather abstract) ma-
thematical model, the equations will be introdu-
ced for the case of a very simple example network.
The model equations presented in the following
are well known from tracer kinetics (Anderson,
1983). However they are adapted here to the spe-
cial structure of metabolic networks.

3.1. Ezample Network

The network shown in Fig. 2 was designed to de-
monstrate the effect of reversible reactions often
occurring n vivo. As is shown below, both di-
rections of a reversible reaction step can influence
the label distribution. Although being oversimpli-
fied, the example illustrates that complex reaction
systems (like the pentose phosphate pathway) —
including exchanging steps — can be quantitated
from measured labels.
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Fig. 2. A simple example network. Left: metabolite
view. Right: carbon atom view. The extracel-
lular flux v; and the labels By, C; are assumed
to be measurable.

The substrate uptake v; as well as the fractio-
nal labels in carbon atoms B; and C; are as-
sumed to be measurable. The intracellular flux
vy takes place in both directions while the others
(v1, v3, v4) are irreversible.

3.2. State Variables

The system will be described in terms of fluxes v;
and labels z;. Both flux directions of a reversi-
ble reaction step must be accounted for. In the
example the forward and backward flux of vy are

represented by the symbols v57,v5". The corre-
sponding net flux is then given by v§®t = v3* —v5™.

The other flux variables are simply denoted by
v1, s, v4 (instead of vi™, v3", v7").

The fractional labels at each carbon atom posi-
tion of intracellular metabolites are denoted by
By, B2, Cy,Cy € [0,1]. Additionally the known
input to the system is specified by A1, As. E.g. a
substrate A which is 100% labelled at the first car-
bon atom position, is described by A; = 1, A, =
0. The terminal nodes Dy, Dy are not required.

3.3. Fluz and Label Balances

The metabolite net fluxes from and to an intra-
cellular metabolite pool must sum up to zero in
stationary state. This gives rise to the following
linear balance equations at stage B and C"

U1 = ,Uglet + v3 1
, —  ,net . ( )
vy = Uy + U3

from which follows
vy =v; and vz = vy — v?et . (2)

This leaves v, v3" to be determined (remember
that vy is measured directly).

The carbon balance equations are established
now. To this end it must be recognized that a

flux variable v; has two meanings: It denotes a
molecular flux (with unit [mol/h]) as well as a
carbon flux (with unit [C-mol/h]). However, the
values of both fluxes are identical. For this rea-
son it is not distinguished between both meanings.
Having this in mind, the flux vz : By — C; (inter-
preted as a carbon flux rather than a molecular
flux) carries the amount of vs - By labelled carbon
atoms per time unit. This term contributes to the
label balances of By and C1, but with opposite si-
gns. The complete set of equations for the pools
Bl, Bz, Cl, Cz then 1is:

0 = V1 Al—'U;Bl+'U;CQ—'UgBl
0 = v Ay—vy Botvy C1—v3Bs 3)
0 = ‘U;B2—U;01+U3 B1—v4C1
0 = ‘U;B1—0;02+U3 Boy—v4Cs

3.4. Fluz Determination

In the example the flux determination problem
can be solved explicitly. We are finished when
vy , vy are computed from vy, By, Cy. Firstly the
label conservation equations

Al +Ay=B1 4+ By =C1+Cy

can be derived from (3). Using this, the unknown
fluxes are calculated to be:

Bj—A

— — - Pp=A

V2 — A14+A-B,-Cy U1
py— — C1—B4 e .
Ugy — A1+A-—2B, (U2 +Ul)

This shows how the rates of reversible reactions
can be computed from labelling data. With con-
ventional measurement techniques only the corre-
sponding net flux rates could be observed!

4. GENERAL FLUX MODEL

A general model for arbitrary metabolic networks
is formulated now. Based on this model, fractio-
nal labels can be computed when all fluxes are
known. The inverse problem of flux estimation
from known labelling data can then be solved via
parameter fitting.

The model makes extensive use of matrix calcu-
lus to obtain a concise notation. All matrices are
more or less sparsely populated which can be ta-
ken into account for their numerical implementa-
tion. It is aimed at a structural matrix represen-
tation of the metabolic system. This means that
all matrices are constant and represent structu-
ral qualities of the underlying network, i.e. they
do not depend on the state variables. Structural
representations are desirable for further mathema-
tical systems analysis.



4.1. State Variables

The vectors

(of equal dimension) comprise both directions of
all molar fluxes in the reaction network. In
the example of section 3 these fluxes are v =
(v1,v7,v3,va)Y and v— = (0,v5,0,0)7 (the
zeroes represent the irreversibility assumptions
made in the example). From these vectors the
composite overall flux vector (of twice the dimen-
sion) and the corresponding net flux vector is for-
med:

v:<v:> ’ vnet:v—»_vh. (4)

v

Later on a measure for expressing the exchange
rate of reversible reactions is needed. This is defi-
ned to be the amount of flux going in both direc-
tions relative to the net flux:

viT = min (v, vi) /v ()

Finally the vector of intracellular fractional labels
of each (enumerated) carbon atom in the intracel-
lular metabolites, as well as the vector of input
labels comprising the known fractional labels of
all carbon atoms, that are fed into the system,
are required. These two vectors are denoted by
inp )

X X

)

In the example x = (B, Bq, C1, 02)T and x\"P —
(Al 3 A2)T .

4.2. Fluz and Label Balances

The flux balances are formulated by using the well
known stoichiometric matrix N and equation (4)
which leads to the linear equation system

N -vpet: =N- v —-N.-v- =0. (6)
In the example (1)
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The label balance equations (3) have a bilinear
structure with respect to x and v. All terms con-
taining a certain flux v; are of type +z;v; and con-
tribute to some pool zj. The coefficients %1 can
therefore be collected in a square Matrix P; and
a rectangular Matrix Pz-mp assoclated with v;. P;
belongs to transitions between intracellular pools,
while Pimp collects coefficients with one extracel-

lular partner. In the example (3):

-1 R 1 .
-1 . . P—»,inp_ o1

- __
P2_ | -

Using matrix notation the carbon pool balance
equations can now be written as:

(o vi P x4 (v PIP) =0 (1)

From these equations follows immediately that

x=x(v)

= —(5;vi - Pi) (T vi - PP P

is a function of v. This equation is the basis for
the simulation of '3C tracer experiments. It can
be solved by matrix factorization or iterative me-
thods. The latter is promoted by the sparse ma-
trix structure (Anderson, 1983).

(8)

4.3. Measurement Fquations

The measurement matrices My, Mx are used to
describe which net fluxes resp. intracellular labels
are measured. They are both composed from unit
vectors. In the example v1, By, C; are measured
and therefore we have:

My=(1 . ), Me=("' ;)

The complete measurement equations then are:

w = Mv' Vnet + v
= My - (v7 =vT)+ ey (9)
y = Mx' X + £x

Herein w,y denote the vectors of measured flu-
xes resp. labels, ey, ex are normally distributed
measurement noise terms with expectation 0 and
covariance matrices Xy, Xx.

4.4. Fluz Estimation

Unlike in the example the general flux determina-
tion problem cannot be solved explicitly. It has to
be done by parameter fitting. The familiar least
squares flux estimator is constructed from (9) by
minimizing the sum of squares function

K()=Iw ~ My - (v= vl
tly -Mx xw) I U0

where ||£||22 = ¢T . 271 . ¢ denotes the squared
weighted norm corresponding to a covariance ma-
trix X. Putting equations (6), (8) and (9) together
we are left with a linearly constrained minimiza-



tion problem for flux estimation:

v = arg min k(v) . (11)
N- (v —=v7)=0

4.5. Numerical Solution

From the linear constraints (6) several flux varia-
bles can be eliminated as has been done in (2). In
a numerically stable way this can be done by using
singular value decomposition. The unconstrained
minimization problem resulting thereby from (11)
can then is solved with an iterative optimization
method.

4.6. Additional Constraints

When all fluxes in the overall flux vector v have
to be estimated, the number of measurements that
are required to determine the whole system might
be too high. Fortunately, if the exchange between
two pools is assumed to be very high compared
to the net flux rate, several variables can be eli-
minated by pool lumping (Schuster et al., 1992).
Moreover many reaction steps (i.e. extracellular
fluxes) can or must be considered to be irreversi-
ble from thermodynamic considerations. Thereby
the a priori knowledge about the biochemical sy-
stem can be used to further reduce the number of
independent parameters.

5. COMPUTER AIDED DATA ANALYSIS

All model equations required to describe the iso-
tope isomer labelling system are built up from
quite large vectors and matrices. A manual input
of these structures would be tedious and suscep-
tible to errors. Moreover model variation stu-
dies would be quite long-winded when using ma-
nual input. A program was written therefore
that automatically generates all required struc-
tures from a familiar textual description of the
biochemical network together with the measured
data. E.g. the the transaldolase-reaction from the
phosphate pathway is written as

TA : GA3P + S7P > E4P + F6P
#ABC + #abcdefg > #defg + #abcABC ;

This means that the first carbon atom of GA3P
(denoted A) is taken over to the fourth carbon
atom of F6P and so on. The program uses the
well known recursive descent parsing algorithm for
translating the equations. See Wiechert (1994b)
for more details.

Another program takes the generated vectors and
matrices as input and performs the numerical
computations as described before. All flux pa-
rameters can be changed interactively to do simu-
lation studies. Finally a minimization procedure

can be set up. All results are written to a protocol
file for further use. More details can be found in

(Wiechert, 1994q).

6. APPLICATION TO C. GLUTAMICUM

The procedure described in section 2 was carried
out with lysine producing Corynebacterium gluta-
micum MH20-22B. Cells were harvested after 30h
incubation with 1-13C-glucose. Figure 3 shows the
biochemical network that was taken as structural
input for flux determination. Since the exact bio-
mass composition is known, the measurable over-
all flux into biomass splits up into several fluxes of
cell components. Table 2 summarizes the measu-
red values for amino acid labels while the measu-
red extracellular fluxes can be taken from Fig. 3.
Based on this structural and measurement data,
all intracellular fluxes together with several ex-
change rates of reversible reactions could be de-
termined. The results are summarized in Table
1. As can be further seen from Table 2, the mea-
sured labels have been reproduced quite good by
the model. The same holds true for the measured
fluxes with an even higher precision (not shown
here). A detailed discussion of the experimental
conditions and the biochemical implications of the
obtained results is is given in Marx et.al. (1995).

7. CONCLUSION

A method for stationary intracellular flux deter-
mination has been developed, that proved to be
well applicable to microorganisms. Because of its
generality and an automated process of data ana-
lysis it can be quickly adapted to arbitrary meta-
bolic networks. The usage of amino acids proved
to open a rich source of meaningful labelling data.
The experimental techniques are presently being
accelerated and standardized to achieve a routine
procedure for variational studies. Further work
must be done to improve the parameter fitting
process by incorporating further (i.e. nonlinear)
constraints. To this end a nonlinear equality cons-
trained optimization algorithm of Marquardt type
is currently being implemented. Valuable insights
concerning identifiability, redundancy and sensi-
tivity have been obtained recently. They will be
published elsewhere. Finally the planning of la-
belling experiments can be further facilitated by
applying graph algorithms as described in Wie-
chert (19948).
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Fig. 3. Structure of metabolic network (central metabolism) as used for C. glutamicum. The shaded regions
comprise intracellular intermediates in certain pathways. The measured extracellular fluxes (including
fluxes into biomass) are given in circles. Intracellular fluxes are denoted by vy, f;.
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