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Abstract:

Stationary flux analysisisan invaluabletool for metabolic engineering. Inthelast yearsthe me-
tabolite balancing technique has become well established in the bioengineering community. On
the other hand metabolic tracer experiments using '*C isotopes have long been used for intra-
cellular flux determination. Only recently both techniques have been combined in full extent
to form a considerably more powerful flux analysis method. This paper concentrates on mo-
deling and data analysis for the evaluation of such stationary '*C labeling experiments. After
reviewing the recent experimental developments the basic equations for modeling carbon labe-
ling in metabolic systems, i.e. metabolite, carbon label and isotopomer balances are introduced
and discussed in some detail. Then the basics of flux estimation from measured extracellular
fluxes combined with carbon labeling data are presented and finally thismethod isillustrated by
using an example from C. glutamicum. Main emphasis lays on the investigation of the excess
information that can be obtained with tracer experiments compared with the metabolite balan-
cingtechniqueaone. Asaprincipal result it isshown that the combined flux analysismethod can
dispense with some rather doubtful assumptions on energy balancing and moreover, that the for-
ward and backward flux rates of bidirectional reaction steps can be simultaneously determined
in certain situations. Finaly, it is demonstrated that the variant of fractional isotopomer measu-
rement is even more powerful than fractional labeling measurement but requires much higher
numerical effortsfor solving the balance equations.
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1 Introduction

1.1 Stationary Flux Analysis

The detailed quantitative knowledge of intracellular metabolic fluxesin vivo is of fundamental
importance for the study of microbial metabolism and metabolic engineering, which means an
engineering approach for the geneticimprovement of metabolic processeswith respect to desired
products [Bai91, SS93, KA93]. In particular the knowledge of stationary intracellular fluxesin
vivo is of immediate practical use for

e the verification of enzyme activities and bidirectional reaction steps taking place in vivo,

e the characterization of different physiological states[V S93, Jor95, SSdG*95], in order to
achieve an empirical quantitative comparison of regulatory mechanisms,

¢ thedetailed quantitative discrimination between genetically manipul ated microorganisms,

e systematic control analysis using methods of metabolic control theory [Kac88, KW86,
AW92].

1.2 Two Well-Established Methods

Stationary flux analysis aims at the quantitation of all intracellular fluxes in central metabo-
lism when the microbial system isin awell defined balanced steady state. In the last years the
metabolite balancing approach has become popular in the bioprocess engineering community
[VS93, GFJA93, vHHH*94, Jor95]. It is based on direct measurements of the fluxes between
the cells and the surrounding medium (henceforth called the extracel lular fluxes).

On the other hand metabolic tracer experiments have long been used for stationary intracel-
[ular flux determination mostly in biochemical research [WHK*82, CSKW83, WK 84, MSJ8g].
Thistechniquerelieson thefractional isotopic enrichment withinintracel lular metabolites (hence-
forth called fractional labeling) that can be accessed with NMR or mass spectroscopy.

Both methods, the metabolite balancing approach aswell asthe tracer approach, expose so-
meinsufficienciesthat cannot be overcomewith one method alone. Whileit turned out that some
rather unsafe assumptions on energy balancing have to be made for acomplete flux analysis ba-
sed on extracellular fluxes, only relative fluxes can be determined when solely labeling datais
available. For thisreason tracer studies have always been supported by afew directly available
flux measurements but only recently several new developmentsin reaction engineering led to a
tight integration of both approaches [STM*94, ZS95, MdGW* 95]. Currently the tracer techni-
gue in combination with direct extracellular flux measurements is supposed to be the most po-
werful methodfor obtainingintracellular flux information with only afew modeling assumptions
on the living system.

The focus of this contribution will be on tracer experimentsin combination with the NMR
measurement technique since bioprocess engineersare usually rather unfamiliar with these tech-
nigues. The reader is referred to [Hof86, VS93, VP94a] for more details on metabolite balan-
cing. Throughout the text main emphasiswill be on modeling and dataanalysis. Theintroduced
mathematical tools will then be used for investigating the general potential of labeling experi-
ments for getting information about the living system. Only those properties of NMR are dis-
cussed that are required for understanding the origin of the data sets used for flux analysis. More
details on in vivo NMR can be taken from [Gad82, Mat82, Lon88, LHHV90] while recent de-
velopmentsin reaction engineering for in vivo NMR are reviewed in [WdG95]. Aniillustrative



application example concerned with the whol e central metabolism of Corynebacteriumglutami-
cumwill conclude thetext. The biological implications of the presented results are discussed in
[MdGWT95, EdG95].
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Figure 1. Available measurement datafor stationary flux analysis: Extracellular fluxes, fractio-
nal carbon labeling, metabolite pool sizes

1.3 Data Sourcesfor Stationary Flux Analysis

Reliable physiological data can only be obtained by measuring methods that do not influence
the living system. The most familiar source of information is given by all quantitatively rele-
vant extracellular fluxes like substrate consumption, product formation, biomass growth or gas
efflux. These fluxes can easily be obtained from standard bioreactor instrumentation [Sch91]
and analytical procedures using simple mass balancing.

The other source of datais presented by the isotopic label distribution in intermediates and
products obtained from tracer experiments. Briefly, a metabolic carbon isotope tracer experi-
ment is carried out by replacing a substrate (e.g. glucose) with a substrate that is '>C or *C la-
beled at a certain carbon atom position. From this moment on, the label is distributed over the
wholenetwork until finally, thefractional labelinginall carbon atomsof intracellular metabolites
equilibrates. In other words after running through an isotopically instationary state the system
finally reaches an isotopically stationary state but always remainsin a metabolically stationary
state.

It depends on the experimental setup and the measurement technique whether the isotopi-
cally instationary state can be observed or only the final isotopically stetionary state. Fig. 8in
[WdG95] illustrates the dynamic progress of an isotopically instationary '*C tracer experiment
with respect to labeling as observed withinan NMR instrument while Table 2 in thiscontribution
is based on stationary data.

Carbon tracer experiments are the most often used isotope labeling experiments for quan-
titative flux determination although 2H and '°N tracers or tracer combinations have also been



applied [KWR88, RCRL90, Lon92, MBW94, RKBY 94]. Among the carbon isotopes '*C has
become the most popular because it can be easily detected with an NMR instrument. For this
reason we concentrate here on >C labeling.

Evaluating isotopically instationary tracer experiments requires the additional knowledge of
intracellular metabolite pool sizes. In some cases these can already be derived from additional
NMR measurements or otherwise they have to be measured from cell extracts (cf. [WdG95]).
If both data sources are not available it may be possible to estimate the pool sizesaswell asthe
unknown fluxes from the measured data by parameter-fitting (see section 4.7).

1.4 Some Typical Experimental Setups

Theresulting data set for flux quantitationisillustrated in Fig. 1. If itissufficiently large, all in-
tracellular fluxes can be quantitated based on very few assumptions on the living system aswill
be shown below. Some basic types of experiments for achieving this goal can now be distin-
guished where in many cases the experiment has been repeated with differently labelled input
substrates [SB79, RB85, CB83]:

1. only extracellular fluxes are measured [V S93, GFJA93, Jor95].

2. only labeling fractionsin anisotopically stable state are measured [WHK 182, WK 84, SEAGS93]

3. extracellular flux measurements are combined with labeling fractionsfrom an isotopically
stationary state [SB79, IWBL89, STM*94, ZS95, MdGW*95],

4. extracellular flux measurementsand the time course of label enrichment in anisotopically
instationary stateis observed [KKW79, FHBS90, WGKF+92, CFGC95]

5. extracellular flux measurements and so called isotopomer fractions (see section 1.6) inan
isotopically stationary state are available [MSJ88, KWL 93, KCS93, DRM 193]

1.5 Preconditionsfor Stationary Flux Analysis

As mentioned before, stationary flux determination by tracer experiments combined with extra-
cellular flux measurements relies on only a few modeling assumptions. However these should
be explicitly mentioned:

1. Thesystemisinametabolic stationary state during the time span taken by the experiment.
Clearly, this can be established inside amodern controlled bioreactor operated in a conti-
nuous culture mode (e.g. in turbidostatic or nutristatic culture).

2. For the metabolic pathways of interest, all reaction steps of the underlying biochemical
network must be known with respect to the involved biochemical reactions and the fate
of al carbon atoms within each step. For the central metabolism this knowledge is well
established and can be taken from any biochemistry text book.

3. Itisassumed that enzymes make no difference between labeled and unlabeled species of
their substrates. Of course thisisthe basic assumption for all kinds of tracer studies. Ho-
wever, it should be mentioned that some small molecul es have been shown to expose iso-
tope mass effects under certain conditions [Wol82, O’ L82, WKKS82].



4. The measurement process does not influence the cell function. This holds true for stan-
dard online instruments and modern sampling techniques with rapid cell inactivation if
only small samples are taken [WdG95]. On the other hand, athough it is generally assu-
med that strong magnetic fields do not affect microbial metabolism thisis questioned by
arecent publication [Oku94]. However using the measurement procedure of [Mar94] the
organisms are actually not cultivated inside the NMR instrument so that this assumption
isno more required (cf. section 2.4).

5. Inthecasewhereanalysisof cellular material isperformed after the experiment (e.g. from
cell extracts or whole inactivated cells) it must be assured that the measured datais repre-
sentative for thein vivo state of the system (cf. section 2.4).
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Figure 2: The2® = 8 different '*C-isotopomers of an ideal molecule T with 3 carbon atoms.
White circles correspond to '?C, black circlesto '*C. When identical scalar coupling constants
between adjacent carbon atoms are assumed (ideal case) the peak patterns in the corresponding
high resolution NMR spectra are schematically shown.

1.6 Isotopomers

Up to now it is not clear, why '*C labeling has outgrown the classical '*C technique in the last
years. Thereason isthat — apart from the intrinsic problems of working with radioactive mate-
rial — much more information can be obtained much easier by using the NMR technique. This
will be explained now in some more detail (cf. [Lon88, JRMS91]).

The main problem of tracer quantitation is to distinguish between labeled carbon atoms at
different positionswithin one metabolite. To thisend in classical carbon isotope approachesthe
metabolites had to be extracted and chemically degraded for separating the single carbon atom
positions[SB79, CRSK 81, DRM*93]. In contrary to this time-consuming procedure an NMR
instrument allowsto directly localize all 1*C labeled atoms at the same time within a mixture of
substances. Thisis even possible within intact cellsusing in vivo NMR (cf. [WdG95]).

Even more information can be obtained with an NMR instrument because so called isoto-
pomers can — at least in part — be distinguished. The isotopomers of a metabolite with ». car-
bon atoms represent the 2” possible labeling states in which this molecule can be encountered



(Fig. 2). Itwill turn out in section 1.8 that in fact more information about intracel lular fluxes can
be obtained from isotopomer data than from positional carbon labeling data alone.

Clearly, isotopomer measurement is beyond the reach of classical methods based on chemi-
cal treatment. Only mass spectroscopy is also capable of distinguishing between isotopomers.
Applicationsto flux determination are described in [IL87, DRM*93, KWL93]. However, mass
spectrometry can only distinguish between those i sotopomers with different numbers of |abeled
carbon atomswhile moreisotopomer fractions can be quantitated with NMR (cf. 4.6 and Fig. 2).

a) J@ b) J@

O® 0@
/ A
BYeX Yo BOoe® S @O

\'/

Ce+e0 CO+00 + 00
Yels Vel s

Figure 3: Example networks demonstrating the superiority of tracer experiments for flux deter-
mination compared to methods based on extracellular fluxes alone. a) Two aternate pathways
for producing P can be distinguished based on positional carbon labels. b) Three pathways can
be distinguished based on isotopomers by multiplet measurement.

1.7 The Significance of Fractional Carbon Labeling Data

Clearly, extracellular flux dataisdirectly related to intracel lular fluxes by stoichiometric balance
equations. Ontheother hand itisnot clear apriori that |abeling data contains any information on
fluxes. A very simpleexampleshowninFig. 3amakesclear that thereareindeed strong relations
between fluxes and fractional |abels even in isotopic equilibrium.

The example shows a network with two aternate parallel pathways for the formation of a
product P from a substrate S both with two carbon atoms. The alternate pathwaysviatheintra-
cellular metabolites A and B are distinguished by the different fate of the carbon atoms from S.
If a[2-'*C]-labeled substrateisfed into the system (see Fig. 3a) two different i sotopomers of the
product will emerge, one labeled at the first and the other at the second carbon position.

Assume now that the fluxesin the alternate pathways are given by v 4, v and the percentage
of labeling for both carbon atoms of P are given by p,, p,. From thiswe get:

YA N
URB P2
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Conseguently the flux ratio can be determined from the label fraction ratio. A similar situation
is encountered within Corynebacterium glutamicum which produces lysine using two different
pathways [SSK+91]. The above argument was used in [SEdGS93] to quantitate the usage of
these different pathways (see also [WK84]).

Clearly thisinformation cannot be cal culated from any direct extracel lular flux measurement.
On the other hand the example reveals the general property of tracer experiments that without
(absolute) extracellular flux measurements only flux ratios can be computed. If in the example
the product formation vp = v 4+ v isknownin addition we get (noticethat p, +p, = 1 because
labeling is conserved in the system)

VA =p1-0p vp = P2 - vp

Of course there would be no measurable effect if the fate of the label would be the samein
both branches. As arule of thumb the flux information that can be obtained from labeling ex-
periments heavily depends on the extent to which position-changing of carbon atoms occurs.
Fortunately, it happens quite frequently that labeled carbon atoms are distributed over the com-
plete metabolic network. Thisfinally explainswhy carbon tracers are the most promising isoto-
pesfor intracellular flux determination while e.g. >N can only be used for special investigations
[KWRSS].

Malate Succinate, Succinyl-CoA
Fumarate

Figure 4: Label scrambling in the citric acid pathway. The symmetric molecules of succinate
and fumarate can freely change their orientation so that labeled carbon atoms finally occur in
two positions of malate with equal probability.

1.8 The Significance of Fractional | sotopomer Data

The examplecan befurther extended for demonstrating that i sotopomer measurements can reve-
al even more detail s about flux distributions. In Fig. 3b another product formation step has been
added that produces P from A and B viaabimolecular reaction step. With theindicated [2-1°C]
substrate labeling this reaction forms a third isotopomer of P with both positions |abeled.

The additional flux is denoted by v~ and the isotopomer percentagesin P are given asin-
dicated in Fig. 3b by po1, p11, pro (note that the unlabeled isotopomer does not occur). We then
ha\/epm +po+pn=1 andvp = v4 + v + vo S0 that:

VA = Pio " VP UB = Po1 * VP Vo = P11 - VP

Of coursethisresult cannot be produced with positional carbon atom labeling measurements
alone. On the other hand the carbon labeling state can be reconstructed from the isotopomer
knowledge as

P1 = pio + pu P2 = po1 + pu1
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and thus the example demonstrates that isotopomer analysisis aways superior or at least equi-
potent to positional carbon label analysis (cf. section 5.4).

Clearly, the presence of a bimolecular reaction step is essential for producing this effect. A
similar situation is encountered in the citric acid cycle where carbon atoms can change positions
within scrambling reactions (Fig. 4). Thisbasically is the phenomenon that is used in [M SJ88,
Lee93] for quantifying citric acid fluxes from i sotopomer measurements.

A——B A—~<—B

Figure 5: Uni- and bidirectional reaction steps from the thermodynamic viewpoint. It depends
ontheinvivofreereaction energy A andthe activation energy A £ whether areaction proceeds
in only one direction or in both directions simultaneously.

1.9 Relationsbetween Stationary and Kinetic Modeling

A short comparison between stationary flux analysis and the investigation of the dynamic be-
haviour of metabolic fluxes in response to changing extracellular conditions shall conclude this
section. Both approaches strongly differ with respect to the experimental procedures and mea-
surement equipment used as well as the results that can be achieved. On the other hand their
common goal isto obtain a quantitative characterization of biochemical reaction stepsin vivo.
In both situations very recently a number of powerful new experimental techniques has been
developed (cf. [WdG95)).

With respect to mathematical modeling, dynamic investigations always aim at the devel op-
ment and experimental validation of detailed kinetic modelsof intracellular metabolism (e.g. [DLC* 84,
WBA92]). On the other hand, for the metabolically stationary situation models are required to
compute unknown intracellular fluxes from stationary measurement data. There are some inter-
relations between the stationary and the dynamical approach showing that both are really com-
plementary to each other:

¢ Usually kinetic models approximate the dynamics of metabolism around a certain statio-
nary state [SV91, WBA92]. Consequently, stationary analysis supplies the cornerstones
for dynamic modeling.

¢ No assumptions on kinetic mechanisms have to be made for stationary modeling. Conse-
guently, the results of stationary flux determination are expected to be more reliable than
those from mechanistic modeling.
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e Aswill be shown in section 4.4 a distinguishing feature of stationary tracer experiments
istheir potential for quantifying both directions of abidirectional reaction step under cer-
tain conditions[WdGA95] (Fig. 5). Thismay be avaluableinformation for distinguishing
equilibrating reaction steps from controlling reaction stepsin vivo. Moreover, for mecha-
nistic modeling this has the consequence that reversible enzymatic mechanisms have to
be taken into consideration [Seg75, MTBK 89, WBA92].

e Of course, resultsfrom stationary flux analysis are only valid around the investigated me-
tabolic state [VP94b]. On the other hand a validated mechanistic model may expose a
larger prediction horizon and may even be capable of forecasting the effect of genetic mo-
difications. However, in both cases a series of experiments under different conditions has
to be performed in order to obtain a complete picture.

2 Measuring Stationary Intracellular Data

2.1 Extracdlular Flux Data

Almost all stationary studies make use of extracellular flux measurementsto a certain degree.
If abioreactor is used for cell cultivation the extracellular fluxes can be calculated using mass
balancing from concentration measurements and the dilution rate. For example HPLC or FIA
instruments, gas efflux measurements and the determination of biomass concentration can be
used for this purpose (cf. [WdG95]).

An important idea was the incorporation of cell mass composition for the quantitation of
the anabolic fluxes that use precursors from central metabolism [Hol86, Val91]. As shown by
[N1S90] the biosynthetic pathways of any cell component can be uniquely traced back to 12 pre-
cursors in central metabolism. These are glucose-6-phosphate, fructose-6-phosphate, ribose-5-
phosphate, erythrose-4-phosphate, glyceral dehyde-3-phosphate, 3-phosphoglycerate, phosphoe-
nolpyruvate, pyruvate, acetyl-coenzyme A, a-ketoglutarate, succinyl-coenzyme A and oxaloa-
cetate. From this knowledge, the knowledge of cell composition and the determined biomass
growth rate a detailed quantitation of the corresponding 12 effluxes from central metabolism is
obtained which dramatically improves the available information.

For convenience many experiments rely on the assumption that biomass composition in mi-
croorganisms is constant over a large variety of metabolic states and microorganisms [Roe83,
Val91]. Of course this assumption deserves great care and ought to be experimentally verified
from time to time though thisis avery laborious task.

2.2 Somemore Detailson NMR Spectra

In order to understand the following modeling considerations some more detailson NMR spec-
traare now briefly sketched at the risk of oversimplification. The reader isreferred to [WdG95,
Mat82, Gad82, Lon88, LHHV90] for an in depth discussion of in vivo NMR measurement tech-
niques.

NMR spectra are superpositions of resonance spectra from all resonating atoms within the
sample. In principle each '*C atom produces a unique resonance peak in the NMR spectrum. Its
frequency position depends on the electro-chemical surrounding of this atom in the metaboliteit
is part of. The area of the corresponding resonance peak is directly proportional to the concen-
tration. An example spectrum taken from an in vivo experiment isgiven in Fig. 8 of [WdG95].

In most cases the '*C isotopes are not directly observed but "H NMR is used instead as an
indirect measuring technique. The '*C isotopes then become detectabl e by a changed resonance
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pattern of the surrounding protons since their 'H peaks split up into peaks from '>C-bound pro-
tons and peaks from '*C-bound protons. This enables the relative amount of labeled carbon
atomsto be determined without knowing the absolute amount of the examined substance. Due
to thelow chemical shift dispersion and broad complex multiplet structures'H spectraare much
harder to interpret than '*C spectra. For thisreason metabolites usually haveto be purified befo-
re they can be effectively measured with 'H NMR [SEdGS93]. An example spectrum is given
inFig. 6.

The situation becomes even more difficult when high resolution spectra are taken for detec-
ting isotopomers. The underlying phenomenon is that — due to scalar spin-spin-coupling —
a '*C resonance peak corresponding to some carbon atom splits up into a so called multiplet
peak when adjacent atoms are labeled too. The number of peaks in the multiplet depends on
the number of |abeled neighbours so that doublets, triplets, quartets and so on can be observed.
It depends on the specific molecule which spectrawill actually result from isotopomers. Fig. 2
schematically shows for an ideal C-3 body how in principle the spectral peaks correspond to
certain labeling states of the observed molecules while Fig. 7 shows what comes out for areal
metabolite (glutamate). However the exact correspondence between isotopomers and spectrain
most cases is known in advance from published NMR data (e.g. [BD85]).

It becomes clear now, why '*C does not always allow to completely separate between all
possibleisotopomers(compareto [KCS93, JSJt 93, DRM*93]). For examplein Fig. 2amixture
of the isotopomers 1, and 1o, Will produce singulet peaks on the first and third position from
which both isotopomer fractions can be quantitated. On the other hand if 1., isalso present in
the mixture the two peaks cannot been uniquely attributed to the three isotopomers (cf. section
4.6).

Spectra

Figure6: Proton NMR spectraof 1°C labeled glutamate extracted from protein of C. glutamicum
after incubation with [1-!°C]glucose. Lower trace: 1*C-decoupled spectrum showing a) H-2, b)
H-3, ¢) H-4 protonsof glutamate and d) signalsfrom impurities. Upper trace: corresponding'*C
satellite position signals obtained after subtracting the '*C-decoupled spectrum from the " nor-
mal” proton spectrum as explained in [SEAGS93].
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Spectra

Figure 7: 1*C isotopomer spectra of the '*C labeled glutamate shown in Fig. 6. Multiplets are
due to scalar coupling with adjacent '*C atoms (cf. [KCS93])

2.3 Approachesfor NMR of Biological Samples

In vivo NMR techniques are reviewed in [WdG95] so that only the most important facts are
summarized here. The principal problem associated with NMR of biological samplesisitslow
sensitivity compared to other techniques like mass spectroscopy. The quality of an NMR signal
depends on the measurement duration for producing the spectrum and the amount of 1abeled ma-
terial within the sample. For isotopomer quantitation, high resolution spectraare required while
alower resolution may be sufficient for determining only positional carbon enrichment. If the
isotopically instationary state has to be observed the measurement duration for one spectrum
is strongly limited resulting in generally low signal to noise ratios. These problems have been
partly overcomein thelast yearsby the devel opment of more powerful NMR instruments, thein-
creased availability of '*C labeled substrates and the experimental techniquesthat are described
in the following.

Thestrongest in vivo NMR signal sare obtained when the volume of the NM R receiver cail is
completely occupied by cellular material asis approximately the case in many studies on perfu-
sed organs[M SJ88, DRM*93]. Inthissituation !*C NM R spectrawith acceptable signal to noise
ratio can be produced in less than a minute for metabolitesin the milimolar concentration range.
This allows time courses [ CFGC95] and even isotopomers to be observed [M SJ88, KCS93].

In contrast to mammalian organs, microorgani smsexpose much higher oxygen demands and
faster growth rates. Asaconseguence even in hollow fiber bioreactorswell suited for high den-
sity cultivation of mammalian cells they cannot be maintained in such high concentrations and
in awell defined reproducible and stable physiological state (cf. [WdG95]). One way to over-
come these problemswas to take concentrated cell suspensions [WHK*82, WK 84, dHUB* 86].
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However it is doubtful if such results are representative for the in vivo state.

The best systems presently availablefor in vivo NMR studies of microorganismsunder truly
well defined stationary conditionsin continuous culture are specially devel oped continuousflow
NMR bioreactors [dGWP+92, Har95]. In such reactorscell densities of up to 30-50 g/l (dry cell
mass) can be maintained and measured on line with in vivo NMR. These systems are very well
suited for monitoring time courses of 1°C label incorporation [WdG95]. On the other hand the
obtained spectral quality is still not optimal for isotopomer determination.

When mixtures of |abeled substances are measured — asis alwaysthe case with whole cells
— agreat many signals of different compoundsin widely differing concentrations can be found
in the spectrum. In particular for low resolution spectra the peaks may significantly overlap
[SB88]. This posesthe problem of spectral deconvolution for disentangling the resonances and
computing the peak areas. Several numerical methods have been devel oped to treat this problem

[DAM88, NS89, MTG94, WMWdG95].
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Figure 8: Decoupling production of labeled material from measuring by protein hydrolization
after cultivation. Amino acid fractions are obtained by preparative separation methods.

2.4 Decoupling Production of Labeled Material from Measuring

Animportant ideafor improving theNMR signal quality wasto decouplethe biological |abeling
experiment from the NM R measuring process. Taking samplesand extracting intracel lular meta-
bolitesisin general not sufficient because most substances arefar too low concentrated (usually
below 1 mmol) to produce an NMR signal. A successful approach is to take advantage of the
cells own anabolism, i.e. of the fact that most intermediates are finally stored in cellular com-
ponents like protein, lipids, RNA or DNA. In thisform they are hidden from NMR observation
but can be extracted by hydrolization in combination with preparative analytic measures(Fig. 8).
Several authorsreport the extraction of glycerol from lipids[ESS83, CB83, RB85], ribonucl eoti-
desfrom RNA/DNA [ESS83, ESW* 93] and amino acidsfrom protein [ESS83, SEBF92, Mar94,
PWK94].

The obtained fractions can be kept in the NMR instrument for an arbitrarily long time so that
high resolution spectraand even multiplet peaks can be observed [SEBF92]. Itisagreat advan-
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tage of the stationary approach that no absol ute pool concentrations are required (cf. section 4.7)
and mass deficiencies occurring during the separation process do not change the labeling fracti-
onsin the sample. On the other hand the isotopically instationary states cannot be reconstructed
with thistechnique.

Clearly, thelargest amount of quantitative information can be taken from the amino acids be-
cause they are synthesized from precursors at many different positions in the central metabolic
network. From their labelling state the fractional enrichment of their pecursors can be imme-
diately derived. Most of these precursor pools are inaccessiblewith other methods because they
are too lowly concentrated in vivo. This technique has firstly been used in a quantitative man-
ner in [MdGW95] which at the same time is the first application of the tracer techniqueto a
continuously cultivated microorganism.

Aspointed out in section 1.5 it must be assured that the measured data is representative for
the in vivo state of the system. In particular the isotopically steady state of the system has to
be guaranteed [BS82, ESW*93]. Thisis anontrivia problem since at the time when the inter-
mediary metabolic pools have reached an isotopicically stationary state after switching to the
labeled substratethis still does not hold for the cell components. Thereason isthat the cell mass
in the bioreactor is originaly unlabeled. However, after several cell residence times unlabeled
cell material iswashed out until finally thefractional labeling in the cell proteinisrepresentative
for theinvivo state. Onthe other hand only alimited number . of residencetimes can be awaited
for financial reasons, which can be corrected by the washout correction factor [MdGW*95]

1
WCF &/

D
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3 Modding of Metabolic '*C L abeling Systems

3.1 Modeling Frameworksfor Tracer Experiments

In order to evaluate the data sets from '*C labeling experiments a model has to be formulated
that quantitatively describesthe relations between fluxes and ' C labels. Thismodel can then be
fitted to the measured extracellular fluxes and intracellular fractional 1abels.

Carbon isotope labeling studies fall within the general category of tracer experiments. Ge-
neral models and mathematical tools for tracer analysis have already been developed in the se-
venties; an excellent textbook is [And83]. However there are some new aspects in metabolic
carbon isotope labeling systems compared to general linear tracer systems:

e In*“classical” applicationsof tracer experimentsthe model containsonly afew pools(usual-
ly less than 10) and only one or two of them could be observed [LR83]. Thisiscompen-
sated by the availability of isotopically instationary observations (i.e. time courses). In
the case of metabolic systems the situation is frequently quite different because a larger
number of pools can be observed but only in the isotopically stationary stete.

¢ Each metabolic reaction step induces several carbon atom transitions that take place with
the same reaction rate. This allows to impose further constraints on metabolic tracer sy-
stems that are not given in the general case.

e Theintracellular 1abeling state can be independently influenced by the forward and back-
ward flux of a bidirectional reaction step (see section 4.4). Although this effect is well
known for general tracer systems [And83, LR83] it has seldom been taken into account
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for metabolic networksin large extent [SB79, CB83, KC83, CFGC95]. Thus, bidirectio-
nal steps should be conceptionally integrated into ageneral modeling framework [SSH92,
WdGA95].

¢ |sotopomer dynamics cannot be handled within the framework of linear tracer kinetics
because quadratic equations are required to describe the system (see section 3.11). On the
other hand they still expose some general structure that can be formalized using aconcise
matrix notation from [Wie95c].

In the context of network modeling and data evaluation it is advisable to set up a general
modeling framework for studying arbitrary nets and to facilitate variational studies. A so called
structural system representation using matrix notation for separating network properties from
flux and label variables greatly facilitates the devel opment of general mathematical toolsfor si-
mulation and system analysis [Red88, Wie9d5b]. However, only in afew cases a genera struc-
tural modeling approach has been taken [HS93, 2S94, MdGW 95]. The modeling framework
presented below is based on the general linear tracer model [And83, BS82] while general mode-
ling of exchange ratesis done asin [MdGW*95] and basic equations for isotopomer balancing
taken from [Wie95c].

3.2 Constructing the Biochemical Network

Constructing a model for labeling systems requires the knowledge of all biochemical reaction
stepsin the network under consideration and moreover the fate of al carbon atoms within each
reaction step. A simple formal notation first introduced in [WdG93] is used here to represent
thisinformation. It isderived from the familiar chemical sum notation presented in [V S93] and
can be later used for automatic model generation. As an example the transaldolase step in the
pentose phosphate pathway is written as:

TA: GAP + S7P > F4P  + F6P
#ABC + dftabedefgy > dtdefs + #abcABC

Thismeansthat thefirst carbon atom of GAP (denoted by the sign # and the capital letter A) is
taken over to the fourth carbon atom of F6P and so on.

Some bimolecular reaction steps require consideration of two molecules of one substance.
This is conveniently expressed by including this substance two times and denoting the dupli-
cate carbon atoms with different symbols. E.g. the conversion of fructose 1,6-bisphosphate to
glyceraldehyde 3-phosphate is simply written as

ALD: F16BP > GAP + GAP
#ABCDEF > #CBA + #DEF

Scrambling reactions (Fig. 4) are usually assumed to be symmetric, i.e. both scrambling steps
have equal probability. Thus the situation shown in Fig. 4 can be easily expressed by:

SCR: SUCCCOA 4 SUCCCOA > MAL + MAL
#ABCD + #UVWX > #ABCD + #XWVU

3.3 Noninteger Stoichiometric Coefficients

Sometimes non-integer coefficients have been used to represent further knowledge on metabo-
lic networks [Roe83, VS93]. The most important example is biomass composition that can be
represented by a biomass formation “reaction”. However, such eguations make no sense when
carbon atoms have to be traced through the network. Fortunately, they can be replaced by a set
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Figure 9: An examplefor demonstrating metabolite, carbon labeling and isotopomer balancing.
a) metabolite network, b) carbon atom network, c) isotopomer network under the assumption
that all steps are unidirectional and the input islabeled asindicated. In this situation only 13 of

the 48 possible isotopomers are really produced.
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of equations that describe the incorporation of each singular precursor metabolite into biomass.
E.qg. incorporation of glucose 6-phosphate into biomassiswritten as

G6PBM: G6P > G6PBiomass
#ABCDEF > #ABCDEF

The corresponding “non-integer coefficient” is then supplied separately as a flux measurement
valuefor GGPBM computed from biomass composition and growth rate. Thisisin any casethe
more natural way to account for biomass composition.

When no labeling datais available the measured carbon fluxes are usually not sufficient for
determining the unknown intracellular fluxes from the stoichiometric balance equations. In this
situation further assumptions have to be made [Val91], or other types of balances have to be
considered in addition. Asan example of an additional assumption some enzymeslikethemalic
enzyme have been assumed inactive in [Val91]. On the other hand flux balancing is extended
by considering energy metabolism (i.e. ATP, NADH or NADPH) in [Roe83, VS93, GFJA93,
Jor95].

Usually the production of ATP from NADH is assumed as a reaction step with known stoi-
chiometry. However, it should be noticed that oxidative phosphorylation is not based on a me-
chanism with fixed stoichiometry and only few things are known on its thermodynamic efficien-
cy invivo [Roe83, WvD87]. Moreover the possibility of futile cycling makes NADH, NADHP
and ATP balancing a delicate problem [CF80, dHBS81, RB85, Pat92, CL94, CMCM*94]. The
same holdsfor direct energy balancing based on free reaction energies [Roe83] which may hea-
vily depend on the physiological situation, i.e. AG® values cannot be directly taken over to the
in vivo situation (cf. [Mav93] and Fig. 5).

34 An Example System

In the following a simple example system taken from [Wie95c] is used for introducing the va-
rious balances that have to be formulated. It is chosen to demonstrate several general features
of labeling systems with as few metabolites as possible. The reaction steps and carbon atom
transitions in the system are given in the introduced formal notation by:

vl: A > B vh: B > K
#12 > #12 #12 > #12
v2: B > E ve: C > D + F
#12 > #12 #1234 > #234 + #1
v3: B + E > C vi: D > E + G
#12 + #34 > #1234 #123 > #12  + #3
v4: E > H
#12 > #12

Three networks are associated to this system [Wie94b]. The metabolite network isshownin
Fig. 9a, the carbon network in Fig. 9b and asmall section of the isotopomer network in Fig. 9c.
It becomes clear that even for small systems isotopomer networks can become quite complex.
For this reason a “full sized” section from central metabolism is completely unsuitable as an
example.

However, the example network bears resemblanceto the citric acid cycle in connection with
the anaplerotic reaction section. It should be noticed that carbon atoms change their position
after one turn in the citric acid cycle while they remain unchanged within an anaplerotic step.
These properties are exposed by the example network too but much fewer carbon atoms are re-
quired.
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Figure 10: Reduced network from Fig. 9 as a result of network simplification: a) metabolite
network, b) carbon atom network
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3.5 Simplification of the Example System

To further reduce the number of isotopomersin the example system it is transformed now to an
equivalent simpler system shown in Fig. 10. The idea behind this simplification isto backtrack
the product carbon atoms F#1 and G#1 through the system. Obviously, it makes no difference
if these atoms are aready split off from B#1 and E#2 instead of C#1 and D#3. Thisallows
to remove C#1, D#3 and C#4 from the system. Finally, G and C can be completely removed
because nothing splits off at these stages. The remaining network now is composed fromv1, v2,
v4, v5 and the changed reaction step

v3: B + E > E + F + G
#12 4+ #34 > #23 + #1 4+ #4
Although this network looks strange, all quantities related with the original network shown
in Fig. 9 can be reconstructed from the following computations based on the reduced system.
This emphasizes that network reduction is an important task whenever isotopomers have to be
accounted for. The considerations made above give some impression of the typical simplifica-
tion operations used in literature to reduce network complexity.

3.6 Flux StateVariables

In the following the values of the metabolic fluxes v1,...,v5 are denoted by corresponding va-
riablesv; > 0. More precisely, two variables v;7, v;~ have to be introduced representing each
forward and backward flux direction (Fig. 5). Clearly, if areaction step isirreversible, one of
these fluxes is zero. In the example it will be assumed that the uptake and product formation
stepsvl, v4 and v5 areirreversible (afamiliar modeling assumption) aswell astheintracellular
step v3. On the other hand v2 is assumed to take place in both directions.

In order to comprise the forward and backward directions of al molar fluxesin the reaction

network the vectors
v = ( V], 05 V5 Uy, U5 ) and vT = ( VT, 05,05, Uy, U5 )
(of equal dimension) are introduced. The additional irreversibility assumptions are given by
vy =vy =vy =v; =0.

The physical unit of fluxesis strictly taken to be [mol/h]. The reason isthat a chemical re-
action step does not only take over substrates to products but also substrate carbon atoms (re-
spectively isotopomers) to product carbon atoms (respectively isotopomers). Clearly, if the unit
[mol/h] is chosen, the same flux values v;~, v/~ can serve for representing metabolite fluxes as
well as carbon or isotopomer fluxes.

Finally, from the vectors v—, v~ the composite overall flux vector

(37

(of twice the dimension) and the corresponding net flux vector

net — —

A% =V -V

isformed (noticethat with standard measurement equi pment only some of these net fluxes can be
observed). Clearly, all componentsof v must be nonnegativewhichisexpressed by the component-
wise inequality

v>0.
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3.7 Pool State Variables

Thelabeling state is always represented by the percentage of labeled material at al carbon atom
positions. Only the intermediary metabolites and the metabolites fed into the system have to
be accounted for balancing. For denoting the label fractions within a metabolite like B small
indexed lettersb,, b, areused. Ingeneral all intermediary carbon atom poolsunder consideration
haveto be enumerated. Thisgivesriseto thefractional label variablesx; € [0, 1] and the overall
labeling vector x. Inour case only B and E are intermediates such that

X = (bl, bg, €1, 62)T

A special type of carbon atoms are those that fed into the system as a metabolic substrate be-
causetheir labeling state isknown apriori. These atoms are enumerated likewise and comprised
to the constant input labeling vector

Xinp — (ah aQ)T

When isotopomers are considered the situation is much more complex. We distinguish bet-
ween the isotopomer fractions of one metabolite by using abinary number that specifies, which
carbon atoms are labeled [FR95]. For instancethe 2? = 4 isotopomer fractionsof B are denoted
by by, bo1, b1o, b11. Since carbon atoms and i sotopomers cannot be confused in the following the
symbol x is used again to denote the isotopomer fraction state vector

X = (6007 bOla blOa blla €00 €01, €10, 611)T (2)
and the relations
boo+bo1+b10+b11=1 bio+b11= by elotenn= e ©)
eoo+eorteotenn=1 bo1+b11= by €p1te11= €3

always hold between isotopomer and carbon label fractions. As in the carbon atom case, the
vector x'™ of input isotopomers has to be defined as:
X" = (aoo, ao1, 10, an)T
Finally, the modeling of isotopically instationary experiments requires the knowledge of ab-
solute molar pool sizes. For aspecific metabolite they are denoted by capital italic letterslike B
for the pool size of B. In the general model the corresponding pool variables are comprised to
the vector

X = (B,E) .

3.8 Metabolite Balance Equations

Several types of material balances can now be formulated for each intracellular pool using the
introduced state variables. Thefirst is the well known stoichiometric balance equation [Hof86]
that holds for the fluxes participating in one metabolite pool. Because the absolute pool sizes
do not change in ametabolic stationary state the sums of incoming and outgoing fluxes must be
equal. In the example the stoichiometric balance equations corresponding to the intermediary
metabolite pools are:

B: o +vy = vy vy o5
E: vy +vy = vy +vy +o7

(4)
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By introducing the stoichiometric matrix

1 -1 -1 . -1
N:(. S )

this can be more conveniently expressed as

0=N.v™, (5)

3.9 Stationary Carbon Label Balance Equations

When carbon atom |abeling is considered acarbon label balance can bewritten for each interme-
diary carbon pool. In this situation the above reaction system should be interpreted as a system
of carbon atom transitions:

vl: A#1 > B#l1 v3: B#1 > F#l1 vd: E#1 > H#I1
vl: A#2 > B#2 vd: B#2 > E#I1 vd: E#2 > H#2
3. E#l > E#2 .
2: B#1 E#1 N 5. B#1 K#1
v Bilo> by V3 E#2 > G#l vi: Byl > Ry

v2: B#2 > E#2 vh: B#2 > K#2

Thecarbon label balancefor B#1 isconstructed now asfollows. Theamount of |abeled material
that is carried over to B#1 by theincoming flux v1 from A#1 and the backward flux of v2 from
E#lisgivenby v;” - a1 + v - 7. On the other hand the outgoing fluxes v2, v3 and v5 take
the amount of (v;" + v3™ + v3") - by out of B#1. If the complete system is assumed to be in
isotopically stationary state the following set of carbon label balance equations comes out:

by: wviar + vye vy +v3+vs7) by

( )
(U?—I—v;—l—v;’) - by
( ) -

(

by: wiay + vy-ey

| | 2 T3 6
er: vyhy + vy = (vyHvi4vr) e ©)
ez vier + vyby = (vi4vi4v) - e
Again this can be more conveniently expressed using matrix notation as
0 vl .
0 _ vy [ m
0 - . as
0 .
—vy — vy —v5 . v b1
n —vy — vj_’ — vy o - vy | b
Vg CE) —VUy — Uz Uy €1
vy vy —v5 — U3 — Uy €9

Heretheinput labelsay, a, are separated from theintermediary labels. Clearly, thisequation has
the general structure

0=P'm (v) - x4 P (v)-x = (Z v, - Pi-np) x4 (Z v,-P;)-x (7)

whereP;, P'™ are called the atom transition matrices[WdGA 95] (compareto the closely related
atom mapping matricesin [2S94]). For example we have:

-1 ... A T 1

- D=1 - | i

e N o | A=
1. . |
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3.10 Instationary Carbon Label Balance Equations

If the system is not in isotopic equilibrium a differential equation system has to be formulated.
In this situation the absolute pool sizes X; play a role because they determine the capacity of
apool for labeled material. In the example the absolute amount of labeled material in the first
position of B isgivenby B - b, sothat d/dt (B - b;) = B - d/dtb, whenthe systemisina
metabolic stationary state. Thisterm hasto be added to the label balance equation at stage B#1
in Eq. (6).

In order to get a general matrix representation similar to Eq. (7) a matrix I is constructed
that enlarges the vector X to the dimension of x by appropriately repeating its entries. In the
example:

1 . B

def 1 . B . B
-X=1 (0)_ C
1 C

Putting all parts together we get the instationary balance equation system

diag(I-X)-%x:Pi”p(v)-me—l-P(v)-x (8)

wherediag (I - X) isthe diagonal matrix constructed from the vector I - X.

3.11 Isotopomer Balance Equations

Whenisotopomersare considered the situation ismore compli cated becausethe number of educts
involved in areaction step determines the (algebraic) order of the reaction equation. In the ex-
ample the reaction step v3 has two substrates so that at the isotopomer level all reactions

v3: B#00 + E#00 > E#00 + F#0 + G#0
v3: B#00 + E#01 > E#00 + TF#0 + G#l
v3: B#00 + E#10 > E#01 + F#0 + G#0
v3: B#00 + E#11 > FE#01 + TFH0 + G#1
v3: B#01 + E#00 > E#10 + F#0 + G#0
v3: B#01 + E#01 > E#10 + F#0 + G#l
v3: B#01 + E#10 > E#11 + F#0 + G#0
v3: B#01 + E#11 > E#11 + F#0 + G#1
v3: B#10 + E#00 > E#00 + PF#1 + G#0
v3: B#10 + E#01 > E#00 + F#1 + G#l
v3: B#10 + E#10 > E#01 + F#1 + G#0
v3: B#10 + EBE#11 > E#01 + F#1 + G#l
v3: B#11 + E#00 > E#10 + F#1 + G#0
v3: B#11 + E#01 > E#10 + F#1 + G#1
v3: B#11 + E#10 > E#11 + F#1 + G#0
v3: B#11 + E#11 > E#11 4+ F#1 + G#l

may happen. Clearly, the probability of two isotopomers with fractional amounts b; and b; to
meet in step v3 isgiven by b; - b; [KCS93]. Consequently, the corresponding total isotopomer
fluxiswvs - b; - b;. Thusisotopomer balancing for bimolecular steps leads to bilinear termswith
respect to the x; whilefor the monomolecular stepsv1, v2, v4 and v5 and the effluxesfrom each
pool all termsin the corresponding balance equations are exactly analogous to those in Eq. (7)
respectively Eq. (8). The complete equation system then is:
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boo : vape + vy -ego = (vy 4v3+v5) boo
bor 1 virar + vy cep = (v34vy+v5)-bor
bio: vira0 + vy e = (v3 4vy +v3)-big
bii: virann + vy en = (v34vy +v3 )by
eoo : vy boo  + w3 (boo + bio) - (eoo +em) = (v +vi+vi)-€oo
eor : vy b1+ 03 (boo + bio) - (er0+€11) = (vy+vy 4o )em
ero: vy b+ w3 (bor 4 bi1) - (eoo Fem) = (v Fvs+vi)-en0
e11: vy b+ 037 (bor 4 bi1) - (ero+enn) = (vy v 4vy)en

Again acomprehensive matrix notation isdesirable. Clearly, thelinear termsinx can still be
expressed with the matrix notation introduced in Eq. (7). On the other hand the bilinear termsin
x are represented by introducing one symmetric matrix for each balance equation. For example
the e, step can be written asfollows:

T Y boo

b01 . R ..o 11 b()l

b10 . R Lo . . b10
ey : 0= l ) ’U; ) b11 ) . . . . . . 1 1 . b11 + U ~b11
2 €00 . PR €00 ( + U + vy ) €11

€1 . . . . . . . . €01

€10 . 1 . 1 . . . €10

€11 . 1 . 1 . . . . €11

The symmetric matrix in this equation will be denoted by Qg7 indicating the flux number and
the target pool. All such matrices Q; ; corresponding to the same flux variable v; can then be
composed to a 3-dimensional matrix structure (i.e. atensor) Q, (which may be thought of as a
vector of square matrices) and a 3D-matrix-times-vector product can then be defined as

Qi,l xT - Qi,l - X

Q.. p xT-Q-Q-x
XT-QZ"X:XT' IZ’ .Xéf .Z’

Qi,n XT : Qi,n - X

Using thisnotation theisotopomer balance equations canfinally bewritten quite similar to Eq. (7)
as [Wied5(]:

0 = P™(v) x inp—I—P( v)-x+x"- Q(V)-x
_ sz mp |np+ sz X+X (Zvi'Qi) ‘X (9)

Input 3D-matrices analogousto P'™ are not required because it can be assumed without loss
of generality that any substrate enters the system viaamonomolecul ar uptake step. It should be
clear now how in principlereactionswith morethan two substrates can berepresented. However,
since such reaction steps can in practice be replaced by successive bimolecular reactionsit isnot
necessary to introduce matrices with dimension higher than three. Finally, the instationary state
equations are constructed completely analogousto Eq. (8).

Interestingly, isotopomers have always been considered in connection with the citric acid
cycle [CSKW83, KWL93, KCS93, FR95] where essentially only one bimolecular step occurs
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at the entry point of acetyl-coenzyme A. Since the labelling state of the input isotopomer is
known the equations for the citrate cycle can be essentialy written without any truly bilinear
term (i.e. Q; = 0 for all « ). Thisreduces the equation system to alinear model with respect to
x which can be mathematically treated with the same methods as the ordinary carbon labelling
systemin Eq. 7 [CSKW83].

4 Simulation and Data Analysis

4.1 Network Synthesis

As shown above all model equations required for describing the isotope and isotopomer |abe-
ling system can be built up from certain vectors and matrices. However, the dimensions can
become quite large. When the whole central metabolism including glycolysis, pentose phos-
phate pathway, citric acid cycle, glyoxylate shunt and anaplerotic reaction section is included
the metabolic network has about 25 metabolite fluxes between 20 metabolite pools, 120 carbon
fluxes between 80 carbon atom poolsand 3.200 i sotopomer fluxesbetween 600 i sotopomer pools
[Sch95, CFGC95]. Thismakes clear that computer aided toolsfor network synthesis and consi-
stency checking are absolutely necessary. In particular model variation studies would be quite
time-consuming when using manual input.

Most authors used highly specific programsfor simulation or data analysis[CB83, JRM S91,
KCS93] or general systems based on explicit equation input [WGKF92, Lee93]. Only afew
general tools for carbon or isotopomer network synthesis have been designed based on explicit
matrix input to generate the system equations [ZS94, HSG*93]. However, for large systems
network synthesis from either matrix or balance equation input is still not satisfying while for
isotopomer systems this effort is almost prohibitive (cf. [CSKW83]).

A more convenient way for network synthesisisto write acompiler program for translating
aminimal formal input like that presented in section 3.2 into the corresponding matrix struc-
tures. For metabolite flux networks several such programs are known [M SS90, Val91, Hof93]
whilefor carbon atom and i sotopomer networksthe program NMRFlux described in [Wie944] is
currently the only implementation. The corresponding algorithmsfor isotopomer network syn-
thesisare described in [Sch95]. Clearly, theinput for other matrix- or equation-based simulation
or computer algebra systems can be easily generated once a matrix representation is available
[Wie94a].

Animportant feature of anetwork synthesisprogramisitsability to check formal consistency
conditions. In [Wie94b] some criteria have been given that lead to consistent networks. In most
casesit issufficient to check thefollowing criteriafor detecting typing errorsin the textual input:
i) Any carbon atom of an educt must appear exactly once on the product side and vice versa, ii)
each molecule must have the same number of carbon atoms within each equation, iii) input and
output metabolites always occur in a monomolecular reaction.

4.2 Simulation

Simulation of *C labeling experiments means to predict the outcome of an experiment when
all fluxesv are known. For this purpose values for the components v; must be given in away
that the constraintsimposed by the stoichiometric equations are respected. Usually the user of a
simulation program wishes to fix certain values while others are varied in each simulation run.
This process can be supported by appropriate software tools [Wie944].
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Assume now that a suitable vector v > 0 is given. Simulation of '*C labeling experiments
then can proceed in different ways:

1. For isotopically instationary experiments the ordinary differential equations (8) associa-
ted to carbon or isotopomer fluxes have to be solved. For non-stiff systemsahigher order
Runge-Kutta scheme is well suited [HNW87]. On the other hand when highly reversing
reactions occur the differential equation system will tend to become stiff. Specialized sol-
vers[CSKW83, HW91], the preliminary introduction of rapid equilibriaby pool lumping
[SSH92] or the preliminary reduction of the network size [CB95] may solve these pro-
blems.

2. Itiswell known that linear tracer systemsare globally stable except from some pathol ogi-
cal situations because the corresponding system matrices P (v) are diagonally dominant
[And83]. From thisthe negativity of al eigenvalues can be concluded. For the isotopo-
mer equation system it can be likewise shown [Wie95c] that itslinearizationis diagonally
dominant inany point 0 < x < 1. Such systemsare called dissipative and can be proven
to be globally stable too [MN91]. As a consequence the stationary state can always be
computed using a differential equation solver as an iterative procedure.

3. Clearly, when only the stationary solution is of interest differential equation solvingisin-
efficient because the transient states are of no interest. In particular the treatment of iso-
topomer systems can be time-consuming because of their high dimensionality. Modify-
ing the well known Euler scheme by introducing relaxation leads to the iterative schemes
for linear and nonlinear equation solving [BL94, Deu95]. In particular the Gauss-Seidel-
Algorithmisused in [ZS94] for solving the linear carbon labeling balancesand in [ Sch95]
to solvetheisotopomer balances. In any situation the sparsity of theinvolved matrices can
be exploited to speed up the computation.

4. Inthe case of carbon labeling systems equation (7) can be explicitly solved for the vector
x because P (v) isinvertible (which follows from its diagonal dominance) [BS82]:

x = x(v) = —(Z v; - P,;)_I(Z v; - P;np) - x'"P (20)

Itiswell known that up to adimension of about 100 theiterative solution of linear equation
systems cannot compete with direct methods even when sparse matrix representationsare
used [Hac93]. Thisturned out to betruefor labeling systemstoo [Sie95]. When ahigh nu-
merical stability is required a QR factorization method accompanied by a preconditioner
[Sie95] or an explicit monitoring of the condition number [FR95] is better suited.

4.3 Computing Explicit Solutions

In our example the stationary carbon labeling equations as well asthe isotopomer equations can
be solved explicitly using computer algebraic methods. For simplicity we henceforth assume
that the input substrate is labeled at the second position, i.e.

ap = 0 a9 = 1
or when expressed with isotopomers

aopo = 0 aop =1 aio=10 ann =0
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To start with the calculation the stoichiometric equations (4) are used to eliminate the flux
variablesv;™ and v™:

— _ — — — —
vyl = U] — vy tvg — v;

—_ — —
Uy = Uy =y

The resulting stationary carbon atom |abeling fractions can then be obtained from Eq. (10) as:

bl = ’Ué_' (648D / [8 7))
bQ = Qs / (677
€ = 19y / (677

€y = (071 /OZO

with the auxiliary terms o; shown below.

For the isotopomer fractions the computation is much more difficult and in general impossi-
ble because the corresponding equation set is essentially nonlinear with respect to x. However,
in this special case the computer algebraic methods discussed in 5.3 help to compute the explicit
result with the aid of a computer algebra system:

boo = 1—"bwo—bor —bn eoo = 1 —e0—en —en
bio = vy vy aianag/ oz(z) €10 = vy raqagayae ozg
boy = azag [ e = vy ar [ o
by = vy adaday [ o e = atairal [ o?
with
ay = o3 oy = v +vy
+ o7 % (3v5 — 2057) a5 = g — U3 10y
+ o (3v5% — 405 vE + 077 2) a5 = vi4vr - (2v5 —vi)
+os (v5? = 20505 — v 24 i) o5 (o5 — vy —v7)
ar = vy — vy vy — vy ar = apas+ v vy - (2a6v5" — ag — v 3" ?)
ay = v vy —vg ag = ar—viajag
a3 = ag— Uy vy ag

4.4 Explicit Flux Deter mination

Assumenow that theflux valuesv;” and v;~ can be directly measured and additionally the labels
by, by areavailable. Thentheremaining unknownintracellular fluxesv;”, v5~ must be determined
for reconstructing the whole system state. From the balance equations (6) the explicit solutions

2
bl

Ué_ = Ur '—(52—b1)'(b2+b1—1) (11)
vy = (v +vy —v5) %
can be computed. The nonlinear mapping
i U; 1=1 b-|2 1-— bQ
o7 o7 s — vy (by —by) - (bg+ by —1) b

thus can be used to visualize the correspondence between unknown fluxes and measured labels
by a superposition of two contour plots (Fig. 11). A similar technique has been also used in
[2S94] as agraphical tool for flux estimation and sensitivity analysis.
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An important observation can be taken from the example: Both directions of the reversible
reaction step v2 have been identified from labeling data. This proves once more that '*C NMR
labeling experiments are considerably more powerful that experimentsthat are solely based on
metabolite balances. This observation motivates a more detailed consideration of bidirectional
reaction steps in the next section.

It turns out that in the exampl e situation i sotopomer measurements are not necessary for flux
determination. However, it isan interesting question, if thisis still true, when the measurement
vz isno more available. In this situation the surplus values b,; and eq;, €19, €11 May contain
more information on the unknown fluxes. This question will be answered in section 5.4.

-
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Figure 11: Superposition of two contour plots illustrating the computation of unknown intra-
cellular fluxes from fractional labeling data. When two extracellular fluxes are assumed to be
measured as v;” = 1.0 and v;” = 0.5 and measurements of b,, b, are available the unknown
fluxesv;” and v~ can be read off from the diagram.

4.5 Exchanging Reactions

When doing simulation studieson theinfluence of exchanging reactionsit quickly becomesclear
that forward and backward fluxes are well suited for formulating the balance equations (7) or
(9) but rather inconvenient for expressing assumptions on exchange rates. To this end a more
suitable coordinate system has to be found in which a forward/backward flux pair v;*,v;~ is
described in terms of the net flux rate v and an appropriate exchange flux v**". In [SSH9Z]
the quantity v¥" = v~ + v~ is suggested for investigation of the system’s behaviour when
v — oo (rapid equilibrium situation). However, this quantity is not convenient for describing
irreversibility (i.e. v;> = 0 or vi- = 0 ) because it depends on v™ in this situation. Another
definition from [MdGW95] that serves better for expressing irreversibility assumptions (but is
rather inconvenient for analytical purposes) is given by (see adso Fig. 12):

xch
7

v = min (v, v]) (12
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As can be easily verified that the pair (v;, vi~) can be computed from (v, v**") and vice

versa. Moreover it should be observed that v is nonnegative but on the other hand it does not
prescribe a certain net flux direction.

a) vetsg  yret—g vhet<g

> «
V V } chh

}Vnet

chh >0 chh:0

Figure 12: Definition of exchange fluxes for bidirectional reaction steps showing forward and
backward flux for a) fixed exchange flux and varying net flux, b) fixed net flux and varying ex-
change flux.

Using v**" physiol ogical assumptionsthat arefrequently madefor biochemical reaction steps
can be expressed as follows (cf. Fig. 5):

1. Irreversibility assumptionsare usually madewhen largefree energy differencesare known
from thein vitro situation (i.e. AG® >> 0). Moreover irreversibility must always be assu-
med for fluxes entering or leaving the system. Clearly, irreversibility of step: isexpressed
by v = 0.

2. Rapid equilibrium is the counterpart of irreversibility. In this case the forward and back-
ward reaction takes place with a high rate compared to the net flux rate: v°" > v,

3. Finaly itisuseful for simulation purposesto study the effect of av**-variation, by setting
vX to arbitrary values.

A simulation run should be parametrized in the (v, v*°") coordinate system where v de-
notesthe vector of all exchange fluxes. The stoichiometric equations and the assumptions made
on the exchange fluxes impose linear constraints on these coordinates. The formal representa-
tion of these constraints can be easily handled by extending the stoichiometric equation (5) to a
more general linear constraint equation:

net
cnstr v cnstr
N ’ xch =c

A%
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46 Measurement Equations

I ncorporating measured val uesrequirestheintroduction of measurement equations. Againama-
trix notation is used where the measurement matrices M express which components of the state
vectors have been measured. The vectors e denote N (0, X)-distributed noise terms with sym-
metric and positive definite covariancematrices X.. Usually the X-matrices havediagonal shape,
i.e. the measurements are assumed to be independent. With this notation we now get

the flux measurement equation w = M, v™e,
the label or isotopomer measurement equation 'y = My-x + ¢y (13)
the pool size measurement equation Y = My X +ey

Clearly, the pool size measurement equationisonly requiredintheisotopically instationary case.
In thissituation thelabel measurement equation must additionally be extended by adiscretetime
parameter.

When NMR multiplet analysis is used for isotopomer measurement, the isotopomer mea-
surement matrix expresses how the measured val ues correspond to to the fractional amounts of
isotopomers. In the exampleillustrated by figure 2 the observation is composed from singul et
peaks s1, sq, s3, doublet peaks d,, d,, d3 and atriplet peak ¢,. Moreover the sum of all percen-
tages must be 1. The correspondence between these measured quantities and the isotopomer
fractionsis given by (cf. [KCS93, JSJ+93]):

11111111 2000 1
1 1 . . i001 S1

| . . . . . i010 S9

1 . . o1 . . i011 53
A T

1 . .1 . 2101 ds

1 . . 1 1110 d3

1 1111 to

Interestingly this My isnot afull rank matrix but there remains only one degree of freedom do
determine all isotopomer fractions from the measurements. Itskernel is generated by the vector
(1,-1,.,.,—1,1,.,.)7, i.e. the isotopomers T#000,I#100,I#001 and I#101 cannot be separa-
ted (compare to section 2.2).

On the other hand if mass spectroscopy is used isotopomers can only be distinguished by
their total mass so that measured quantities g, m1, my, ms are obtained. We then have:

2000

1111 1 1 11 ‘oot 1
1 2010
11 .1 . . ] = om
1 .11 . “100 ma

2101

1 ;

2110
1111

This is obviously much less information which explains why NMR is in principle superior to
mass spectroscopy. However, both methods can be combined with thetime-consuming chemical
degradation technique which enables a complete isotopomer analysis to be performed [IL87,
DRM*93].
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4.7 Flux Estimation

In the general situation flux estimation cannot be achieved explicitly likein section 4.4 or graphi-
cally using the graphical superposition technique as demonstrated in Fig. 11 because the number
of unknown parametersis too large for reasonably complex networks (cf. section 4.1). In this
situation anonlinear regression approach using the familiar least squares estimator is appropria-
te [BS82, SW89]. Knowing that x is always a function of v by Eqg. (10) this flux estimate is
obtained as the solution of the nonlinear programming problem:

minimize £ (V) =|lw =M, - v¥g + [y — My x(v)|[g,

net
congtrained by IO . ( chh ) — consr (14)
and v>0

where |[£]|3 = ¢T - 71 . ¢ denotes the squared weighted norm corresponding to a covarian-
ce matrix 3. In the case where only flux measurements are available this is exactly the linear
estimate for flux estimation from extracellular flux data proposed in [V S93] that can be directly
computed using the Gauss-Markov theorem [Arn90].

In theisotopically instationary state the situation becomes more complex because usually not
all pool sizes can be measured. Consequently, they have also to be estimated from the measured
data, i.e. « (v) in Eq. (14) now becomes x (v, X) and the sum of squares has to be extended by
theterm ||Y — Mx - X|3, .

This shows that instationary experiments require more information compared to the statio-
nary case. This problem is usually treated by assuming fixed sizes for all small pools from li-
terature data [FHBS90, WGKF+92, CFGC95] while taking measurements for the large pools
[WGKF*92]. This strategy seems to be justified because the model outcoume is often very in-
sensitive with respect to small pool sizes[WGKF+92, CFGC95].

4.8 Solution of the Flux Estimation Problem

In the majority of applicationsthe flux estimation problem is solved explicitly as has been done
in section 4.4. However this approach cannot in general make use of the compl ete measurement
information. The same holds for the graphical approach (Fig. 11) that is strongly limited to di-
mensions one and two. On the other hand the general numerical solution of the flux estimation
problem (14) poses severa problems:

1. The linear constraints have to be resolved. This can be done with appropriate numeri-
cally stable matrix factorization techniques like singular value decomposition [PFTV 88,
Vval91].

2. Exchange fluxes as defined by Eq. (12) are only piecewise differentiable functions. This
problem can be treated with a derivative free algorithm like the well known Nelder Mead
simplex algorithm at the cost of large computation times ashas been donein [MdGW*95].

3. Theinequality constraints v > 0 have to be strictly obeyed. An ad hoc solution to over-
come this problem is simply to replace v; by some A\? which is always positive and then
to minimize over ;. However, thiswill significantly decrease numerical stability.

4. Whilein older papers the minimimum of « (v) has been found manually by trial and er-
ror [KKW79, SB79] iterative optimization algorithms are now used [WGKF+92, KCS93,
MdGW*95]. A modern successive quadratic programming algorithm that can simulta-
neously handle the constraintsis developed in [Sie95].
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5. In many cases the computational complexity of the instationary flux estimation problem
has been overcome by more or less dramatical simplifications of the network [FHBS90,
TDHW91, SSH92, CFGC95].

49 Satistical Analysis

Statistical analysisis required to judge the quality of the measured data and the obtained estima-
tes. Several well established statistical methods can be applied for this purpose:

¢ Theability of themodel to describe the measured data set can betested [RB85, WGK F+92,
RDC*95, FR95].

¢ Redundanciesin the measured data set can be used to detect measurement errors [Val91,
VHRH*94, Wie954].

e Sensitivity analysis of the model output with respect to the input parameters is used to
study their influence [CB83, Lee93, CFGC95, CB95, Wied5bh].

¢ The sengitivity of the estimated parameters with respect to the measured quantities show
how the estimates are influenced by single measurements [Wie95b)].

¢ The approximate covariance matrix for the estimated parameters can be computed and
from this approximate parameter confidence regions can be constructed [RB85, KCS93,
Wie95b].

All sensitivities as well as the covariance matrix can be computed when the derivative of
x (v) from Eq. (7) with respect to v isknown. It can be computed by implicit differentiation as
follows [Wie95h:

ox - in
0= (ZVZ'-PZ')-——{—(me-P]'-X—{—Pjp)
B dv;

Thus 0x /dv can be computed using the same matrix factorization that has already been used
for computing x (v) in Eq. (10). This further emphasizes the use of direct methods instead of
aniterative solution of Eq. (7) (cf. section 4.2). A similar implicit differentiation formulacan be
proven for the isotopomer system (9).

Finally, it should be mentioned that sensitivity analysisis only an approximative approach
to statistical analysis because the originally nonlinear model is replaced by its linearization. It
iswell known that this can lead to serious extrapolation errors [BW88, Paz93]. Moreover it can
be shown [Sie95, Wiedbc] that this effect will most likely occur when large exchange fluxes
are estimated. In the case where a graphical method is applicable (cf. section 4.8), nonlinear
confidence regions can beimmediately derived from the graphical representation [Lee93, ZS94,
Wie95c]. A moregeneral approach to estimate nonlinear parameter confidence regionsthat uses
nonlinear statistical methods is developed in [Wie95c].

5 Global Analysisof Stationary L abeling Systems

5.1 Problemsof Global System Analysis

This section concentrates on the principal amount of information that can be obtained from me-
tabolic carbon labeling experiments. In this context the results of a parameter-fitting procedure
are always unsatisfactory for various reasons:
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1. Parameter-fitting produces local results, i.e. a global optimum can never be guaranteed.
In [WdG93] an example from the pentose phosphate pathway has been given that admits
for two alternative flux solutions both with good (local) statistical quality measures. An
even more complicated exampleis given in [ZS94] where either one or two solutions can
occur in a certain system state.

2. Theresult isan a posteriori result, i.e. it cannot be decided in advance (i.e. apriori) if the
measurementswill contain sufficient information for flux determination.

3. The measurement of fractional labels or even isotopomersis atime-consuming procedu-
re. If redundanciesin thisinput data can be predicted a priori thiswill save alot of time
because some measurements do not have to be performed.

4. Any additional apriori characterization of the experiment outcome of an experiment can
be used for complexity reduction. Thisis of great importance when isotopomer systems
are considered.

Obvioudly, these questions are of great importance for the design and evaluation of experi-
ments. Inthe case of flux analysisfrom extracellular flux measurementsa onewe are confronted
with alinear system for which all questions posed above can be explicitly and efficiently ans-
wered [VS93, vHHH*94, vHRH*94]. On the other hand label balancing introduces algebraic
equations to the system so that more advanced methods have to be used for system analysis.
Interestingly many questions can be answered in this situation too.

5.2 ldentifiability and Redundancy

The questions posed above are better known as identifiability and redundancy problemsin con-
trol engineering [Wal87]. In this context the central problems are:

I dentifiability a posteriori , which means that al fluxes v can be uniquely determined from a
given data set (w,y).

I dentifiability a priori , which means that all fluxes v can be uniquely determined whatever
the outcome (w,y) of the experiment will be.

Redundancy of measurements , which meansthat there exist relationsf (w,y) = 0 that hold
independently of the non-measurable fluxesinv.

In any case the measurements must be assumed to be taken without error (i.e. ¢, = ¢, = 0).
Thismeans no restriction because sensitivity can be studied later by using the methods presented
in section 4.9.

It may be observed that Egs. (8) when combined with Eqg. (13) represents a general para-
metrized linear state space model with measured variablesy. For such models many results on
identifiability have been proven [DdA87]. On the other hand the stationary case of Eq. (7) has
never been considered explicitly because the number of measurements was too low to obtain
significant results. This makes stationary flux identification essentially anew problem.



35

5.3 Algebraic Methods

Explicit and sometimes quite long-winded algebraic calculations for deriving explicit flux so-
lutions of metabolic carbon labeling systems can be found in numerous publications [ Coh83,
MSJ88, Lee93, MCDB94, STM*94]. In each case the solution strategy is highly application
specific and based on various simplifying assumptions on the network structure. The usual as-
sumptionisthat all reaction stepsareeither irreversibleor in rapid equilibrium [STM+ 94, ZS95].
Moreover whole metabolic pathways like the pentose phosphate pathway are found to be lum-
ped to one reaction step [PSMC93, STM*94]. If any new equation is inserted in the system
all computations have to be reworked and most possibly a completely new solution strategy
has to be found. Thiswill amost surely happen when exchanging reactions are added because
the complexity of networksisin aclose relation to the number of cyclic pathways they contain
[KP92, Mes93].

A general approach to algebraic identifiability analysis presented in [Wie95a] and [Wie95b]
isbased on network simplification algorithms[RML 93, GS91] and computer algebraic methods
[CLO92, BW93] (see[FR9I5] for moreempirical approach). Thegeneral ideaisto automatically
deriveexplicit equationsrelating fluxesto |abel measurements. In particular it can betried to ex-
press the unknown fluxesin terms of measured quantities as has been done in section 4.4. Simi-
lar computer algebraic algorithmsfor multivariate polynomial equations have been successfully
applied to identifiability problemsin control engineering [LR87], solution of stationary bioche-
mical reaction systems[MMN89] or stationary optimization of fermentation processes[PT95].
The details would exceed the scope of thistext so that only the results that come out for the ex-
ample are given here.

54 Analysisof the Example System

For the example system it has been aready proven by Eq. (11) that all fluxes are identifiable a
priori if v;7, vz and by, b, are known. Clearly, it follows the identifiability a posteriori. On the
other hand the following redundancy relations can be proven to hold independent of the actual
fluxesvy™, vy, vy, 05

0 = blel—b%—bl—{—bg 0 = bg—b%—bl—}—bn
0 = bieg—beey — b1+ e 0 = biern —erby

From this weimmediately obtain

er = (bé +b1 — b))/ by by = b3+ b — by
€y = (bg€1+bl—€1>/bl €11 = bllel/bl

while by, eqo follow from Eqg. (3). Consequently, 4, and b, contain all information on fluxesthat
can be obtained by label measurements. All the other label as well as isotopomer fractions are
redundant! This example shows that isotopomer measurements need not increase the available
information on intracellular fluxes as was the case in the example from section 1.8.

6 Application to Corynebacterium glutamicum

6.1 Example Organism and Measured Data

Corynebacteriumglutamicumhas always been of great interest for amino acid production, which
isclosely coupled to the central metabolic pathways, i.e. glycolysis, pentose phosphate pathway
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and citric acid cycle. Thus stationary flux analysisis a promising diagnostic method in the con-
text of metabolic engineering for amino acid production. The C. glutamicum strain MH20-22B
studied in [MdGW*95] isknown asalysine producer. Sincein thistext thefocusison the prin-
ciplesof flux analysis more details on the biology of this organism can be taken from [EdG95].
The following results are taken from [MdGW*95].

C. glutamicum MH20-22B was cultivated under lysine producing conditionswith adilution
rate of 0.1 h~! in continuous culture. In this situation the total substrate uptake rate was 1.49
mmol/ (g - h) (dry cell mass) from which 18.3 % lysine was obtained. Table 1 presentsall mea-
sured extracellular fluxes that are normed to a 100 % substrate influx for convenience. For cal-
culating the biomass effluxes a biomass composition similar to that of [N1S90] was assumed.

Intracellular fractional labels were measured using the decoupling technique described in
section 2.4. To obtain a(nearly) equilibrated labeling state in the protein fraction three cell resi-
dence times were taken for incubation with [1-'*C]glucose corresponding to a washout correc-
tion factor of 1.05 (cf. Eq. (1)). The separated amino acids and the corresponding label enrich-
ment can be taken from Table 2. All measured NMR spectra have a high quality, an exampleis
shown in Fig. 7. From these spectra a measurement error below the values given in Table 2 can
be asserted.

Flux Measured
Value [%]
Substrate uptake:
GLC 100.0
Biomass effluxes:
G6P 1.3
F6P 0.5
GAP 0.9
PYR 18.0
PYRx* 23.0
E4P% 1.8
RI5P 1.0
RI5P 49
AKG 7.0
AKGY 1.2
OAA 11.6
Product formation:
LY S* 18.3
Cc0O2 275.1

Table 1. Extracellular fluxes measured in continuous culture of C. glutamicum All values are
normed to a 100 % glucose uptake rate of 1.49 mmol/ (g - h) (dry cell mass) Metabolite abbre-
viations can be taken from Fig. 13 and are assumed to be self explaining (see [MdGW95] for
details). x indicates a flux coupled to CO, formation. t indicates aflux coupled to CO, refixa-
tion.

6.2 Biochemical Network

For shortness the detailed biochemical reaction equations in the formal notation introduced in
section 3.2 are not reproduced here and only the underlying metabolite network used for flux
estimation is presented in Fig. 13. Reaction steps that have been assumed to be bidirectional
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Figure 13: Biochemical network used for flux analysisin Corynebacterium glutamicum MH20-
22B under lysine producing conditions (datafrom [MdGW*95]). Estimated stationary net fluxes
are given in rectangular boxes while the associated exchange fluxes for bidirectional reaction
steps given in rounded boxes are taken relative to the corresponding net fluxes, i.e. the values
v /v are represented. Effluxes to biomass (see Table 1) have been left out for simplicity.



Carbon  Measured Estimated Measurement
Atom Value[%] Vaue[%] Precision[%]
E4P#1 2.0 25 1.0
E4P#2 3.6 2.0 1.0
E4P#3 2.0 19 1.0
E4P#4 16.7 15.3 2.0
GAP#1 2.9 2.7 0.2
GAP#2 2.6 2.6 0.1
GAP#3 26.7 26.3 0.2
PYR#2 3.0 2.7 1.0
PYR#3 26.4 26.3 0.5
AKG#2 24.1 22.6 0.3
AKG#3 11.1 9.8 0.5
AKGH#4 28.1 26.3 0.6
OAA#2 7.7 9.8 2.0
OAA#3 209 22.6 2.0
OAA#4 16.8 17.3 2.7
LYS#2 6.8 7.1 0.2
LYS#3 219 24.0 0.3
LYS#4 18.9 17.3 1.0
LYS#5 22.2 24.9 1.0
LYS#6 5.6 5.3 0.3
CO24£1 23.0 21.6 0.4
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Table 2: Some fractional |abels measured from protein hydrolysate of C. glutamicum compared
to values predicted by the balance equations with the estimated fluxes [MdGW*95]. The mea
surement precision depends on the quality of the measured spectra. Labeled CO, was measured

by mass spectroscopy.
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are labeled therein by an additional box with rounded edges. Irreversibility assumptions were
made on the basisof thermodynamic considerations. Thescrambling stepsfrom Fig. 4 have been
introduced in the citric acid cycle and in the glyoxylate shunt. Both lysine production pathways
[SSK*91] have been incorporated.

A remark has to be made on the anaplerotic reaction section (cf. [Val91]). There are three
possible anaplerotic reaction steps catalyzed by PEP carboxylase, PEP carboxykinase and the
malic enzyme while even a fourth enzyme (pyruvate carboxylase) may be present [TMT79].
Only the PEP carboxykinase step is supposed to be reversible. The identifiability of the corre-
sponding fluxes from label measurements has been discussed in [Wie95b). It turned out that for
the anapl erotic section only acombined net flux from thelumped phosphoenol pyruvate-pyruvate
pool to the oxal oacetate pool can be estimated accompanied by an exchange flux. Interestingly,
more details of anaplerotic fluxes would be identifiable if the malate |abeling state were availa-
ble.

6.3 Achieved Results

Theintracellular flux estimates (EQ. (14)) computed from the measured dataare showninFig. 13.
Moreover the simulated |abeling state corresponding to the estimatesis presented in Table 2. The
table showsthat all label measurements are well reproduced by the simulation run. The measu-
red fluxes are even better reproduced but are not given here for shortness. From computed stati-
stical quality measures givenin [Sie95] it becomes clear that all net fluxes are well determined.
On the other hand the estimated exchange fluxes are only accurate within an order of magnitude
(compareto section 4.9). However, it is possibleto decideif areaction step ishighly reversible
or rather unidirectional which isthe principal goal of the analysis.

Some remarkabl e facts that are closely linked to modeling and the general stationary flux
determination problem shall be pointed out. Further biological implications are discussed in
[EAGI5]:

1. Bidirectional reaction steps frequently occur and can be quantitated in vivo which seems
to beimpossiblein vitro [FCA+93]. Consequently, the consideration of such stepsin the
modeling processis absolutely necessary. Thisin turn requires alarge amount of measu-
rement data for estimating all unknown parameters.

2. All fluxes are estimated without the incorporation of energy balances. Thusresults on the
cellular energy metabolism can be derived from the achieved quantitative results. For ex-
ampleit turnsout that thereisan excessNADHP formation for which aconsuming reacti-
onisnot yet known[MdGW*95]. A balanced NADPH formation was previously assumed
in[Va9l].

3. The exchange rate of the anaplerotic reaction section indicates a futile cycle which once
more stresses the importance of bidirectional reactions (cf. [dHBS81, CMCM*94]).

7 Conclusion and Future Prospects

Stationary flux determination is proven to be an invaluable diagnostic tool in the context of me-
tabolic engineering. When sufficient measurement data is available it can be carried out with
almost no critical assumptions on the living system like e.g. energy balancing. For this purpose
fractional labeling datafrom carbon tracer experimentsis an important source of informationin
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addition to direct extracellular flux measurements. Using this source enables not only net flu-
xesto be estimated but also exchange fluxes of bidirectional reaction steps. Thesein turn allow
to distinguish between equilibrating and irreversible reaction stepsin vivo. Thiswasillustrated
successfully for the complete central metabolism of C. glutamicumin [MdGW*95]. If isotopo-
mer measurements are available this may even increase the amount of information but it need
not to be so in every case.

From general modeling considerationsit becomes clear that as many information sources as
possible should be used for flux determination. In this context isotopomer measurements are
a promising source of information that is currently not extensively used. Modeling and data
analysis with isotopomer systems will require additional efforts for solving the associated high
dimensional numerical problems. The same holds for the statistical analysis of the estimated
parameters which poses a difficult nonlinear statistical problem [Sie95]. Finally, from the view-
point of global system analysis, general methods for network reduction, identifiability and red-
undancy analysis haveto be devel oped that allow to judge the amount of information that can be
achieved with a certain experiment. Finally appropriate software tools for stationary flux ana-
lysis are required when this technique is to be established in interdisciplinary research teams
[Wie94a, Wied5d].

From the experimental viewpoint the measurement procedures haveto be further accelerated
to establish stationary flux analysis by '*C tracer experiments as a routine procedure. Only the
evaluation of a series of experiments under varied physiological conditions can bring atruein-
sight into metabolic regulation [V S93, Jor95, SSdG195]. Similarly, the comparison of different
strains which are distinguished by well known genetic modifications will demonstrate the role
of acertain enzymatic step within acomplex network. Finally, stationary flux analysis— being
free from assumptions on the biological system to a large degree — may help to find out how
enzymesreally work in vivo, i.e. phenomenalike channeling, enzyme complexes or scrambling
[Mat93, SSM S93] may be investigated in more detail when sufficient measurement information
isavailable.
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