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Abstract:
Stationary flux analysis is an invaluable tool for metabolic engineering. In the last years the me-
tabolite balancing technique has become well established in the bioengineering community. On
the other hand metabolic tracer experiments using ��� C isotopes have long been used for intra-
cellular flux determination. Only recently both techniques have been combined in full extent
to form a considerably more powerful flux analysis method. This paper concentrates on mo-
deling and data analysis for the evaluation of such stationary ��� C labeling experiments. After
reviewing the recent experimental developments the basic equations for modeling carbon labe-
ling in metabolic systems, i.e. metabolite, carbon label and isotopomer balances are introduced
and discussed in some detail. Then the basics of flux estimation from measured extracellular
fluxes combined with carbon labeling data are presented and finally this method is illustrated by
using an example from C. glutamicum. Main emphasis lays on the investigation of the excess
information that can be obtained with tracer experiments compared with the metabolite balan-
cing technique alone. As a principal result it is shown that the combined flux analysis method can
dispense with some rather doubtful assumptions on energy balancing and moreover, that the for-
ward and backward flux rates of bidirectional reaction steps can be simultaneously determined
in certain situations. Finally, it is demonstrated that the variant of fractional isotopomer measu-
rement is even more powerful than fractional labeling measurement but requires much higher
numerical efforts for solving the balance equations.
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1 Introduction

1.1 Stationary Flux Analysis

The detailed quantitative knowledge of intracellular metabolic fluxes in vivo is of fundamental
importance for the study of microbial metabolism and metabolic engineering, which means an
engineering approach for the genetic improvement of metabolic processes with respect to desired
products [Bai91, SS93, KA93]. In particular the knowledge of stationary intracellular fluxes in
vivo is of immediate practical use forG the verification of enzyme activities and bidirectional reaction steps taking place in vivo,G the characterization of different physiological states [VS93, Jor95, SSdG H 95], in order to

achieve an empirical quantitative comparison of regulatory mechanisms,G the detailed quantitative discrimination between genetically manipulated microorganisms,G systematic control analysis using methods of metabolic control theory [Kac88, KW86,
AW92].

1.2 Two Well-Established Methods

Stationary flux analysis aims at the quantitation of all intracellular fluxes in central metabo-
lism when the microbial system is in a well defined balanced steady state. In the last years the
metabolite balancing approach has become popular in the bioprocess engineering community
[VS93, GFJA93, vHHH H 94, Jor95]. It is based on direct measurements of the fluxes between
the cells and the surrounding medium (henceforth called the extracellular fluxes).

On the other hand metabolic tracer experiments have long been used for stationary intracel-
lular flux determination mostly in biochemical research [WHK H 82, CSKW83, WK84, MSJ88].
This technique relies on the fractional isotopic enrichment within intracellular metabolites (hence-
forth called fractional labeling) that can be accessed with NMR or mass spectroscopy.

Both methods, the metabolite balancing approach as well as the tracer approach, expose so-
me insufficiencies that cannot be overcome with one method alone. While it turned out that some
rather unsafe assumptions on energy balancing have to be made for a complete flux analysis ba-
sed on extracellular fluxes, only relative fluxes can be determined when solely labeling data is
available. For this reason tracer studies have always been supported by a few directly available
flux measurements but only recently several new developments in reaction engineering led to a
tight integration of both approaches [STM H 94, ZS95, MdGW H 95]. Currently the tracer techni-
que in combination with direct extracellular flux measurements is supposed to be the most po-
werful method for obtaining intracellular flux information with only a few modeling assumptions
on the living system.

The focus of this contribution will be on tracer experiments in combination with the NMR
measurement technique since bioprocess engineers are usually rather unfamiliar with these tech-
niques. The reader is referred to [Hof86, VS93, VP94a] for more details on metabolite balan-
cing. Throughout the text main emphasis will be on modeling and data analysis. The introduced
mathematical tools will then be used for investigating the general potential of labeling experi-
ments for getting information about the living system. Only those properties of NMR are dis-
cussed that are required for understanding the origin of the data sets used for flux analysis. More
details on in vivo NMR can be taken from [Gad82, Mat82, Lon88, LHHV90] while recent de-
velopments in reaction engineering for in vivo NMR are reviewed in [WdG95]. An illustrative
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application example concerned with the whole central metabolism of Corynebacterium glutami-
cum will conclude the text. The biological implications of the presented results are discussed in
[MdGW H 95, EdG95].
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Figure 1: Available measurement data for stationary flux analysis: Extracellular fluxes, fractio-
nal carbon labeling, metabolite pool sizes

1.3 Data Sources for Stationary Flux Analysis

Reliable physiological data can only be obtained by measuring methods that do not influence
the living system. The most familiar source of information is given by all quantitatively rele-
vant extracellular fluxes like substrate consumption, product formation, biomass growth or gas
efflux. These fluxes can easily be obtained from standard bioreactor instrumentation [Sch91]
and analytical procedures using simple mass balancing.

The other source of data is presented by the isotopic label distribution in intermediates and
products obtained from tracer experiments. Briefly, a metabolic carbon isotope tracer experi-
ment is carried out by replacing a substrate (e.g. glucose) with a substrate that is �l� C or ��m C la-
beled at a certain carbon atom position. From this moment on, the label is distributed over the
whole network until finally, the fractional labeling in all carbon atoms of intracellular metabolites
equilibrates. In other words after running through an isotopically instationary state the system
finally reaches an isotopically stationary state but always remains in a metabolically stationary
state.

It depends on the experimental setup and the measurement technique whether the isotopi-
cally instationary state can be observed or only the final isotopically stationary state. Fig. 8 in
[WdG95] illustrates the dynamic progress of an isotopically instationary �l� C tracer experiment
with respect to labeling as observed within an NMR instrument while Table 2 in this contribution
is based on stationary data.

Carbon tracer experiments are the most often used isotope labeling experiments for quan-
titative flux determination although

&
H and �+n N tracers or tracer combinations have also been
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applied [KWR88, RCRL90, Lon92, MBW94, RKBY94]. Among the carbon isotopes ��� C has
become the most popular because it can be easily detected with an NMR instrument. For this
reason we concentrate here on ��� C labeling.

Evaluating isotopically instationary tracer experiments requires the additional knowledge of
intracellular metabolite pool sizes. In some cases these can already be derived from additional
NMR measurements or otherwise they have to be measured from cell extracts (cf. [WdG95]).
If both data sources are not available it may be possible to estimate the pool sizes as well as the
unknown fluxes from the measured data by parameter-fitting (see section 4.7).

1.4 Some Typical Experimental Setups

The resulting data set for flux quantitation is illustrated in Fig. 1. If it is sufficiently large, all in-
tracellular fluxes can be quantitated based on very few assumptions on the living system as will
be shown below. Some basic types of experiments for achieving this goal can now be distin-
guished where in many cases the experiment has been repeated with differently labelled input
substrates [SB79, RB85, CB83]:

1. only extracellular fluxes are measured [VS93, GFJA93, Jor95].

2. only labeling fractions in an isotopically stable state are measured [WHK H 82, WK84, SEdGS93]

3. extracellular flux measurements are combined with labeling fractions from an isotopically
stationary state [SB79, JWBL89, STM H 94, ZS95, MdGW H 95],

4. extracellular flux measurements and the time course of label enrichment in an isotopically
instationary state is observed [KKW79, FHBS90, WGKF H 92, CFGC95]

5. extracellular flux measurements and so called isotopomer fractions (see section 1.6) in an
isotopically stationary state are available [MSJ88, KWL93, KCS93, DRM H 93]

1.5 Preconditions for Stationary Flux Analysis

As mentioned before, stationary flux determination by tracer experiments combined with extra-
cellular flux measurements relies on only a few modeling assumptions. However these should
be explicitly mentioned:

1. The system is in a metabolic stationary state during the time span taken by the experiment.
Clearly, this can be established inside a modern controlled bioreactor operated in a conti-
nuous culture mode (e.g. in turbidostatic or nutristatic culture).

2. For the metabolic pathways of interest, all reaction steps of the underlying biochemical
network must be known with respect to the involved biochemical reactions and the fate
of all carbon atoms within each step. For the central metabolism this knowledge is well
established and can be taken from any biochemistry text book.

3. It is assumed that enzymes make no difference between labeled and unlabeled species of
their substrates. Of course this is the basic assumption for all kinds of tracer studies. Ho-
wever, it should be mentioned that some small molecules have been shown to expose iso-
tope mass effects under certain conditions [Wol82, O’L82, WKKS82].
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4. The measurement process does not influence the cell function. This holds true for stan-
dard online instruments and modern sampling techniques with rapid cell inactivation if
only small samples are taken [WdG95]. On the other hand, although it is generally assu-
med that strong magnetic fields do not affect microbial metabolism this is questioned by
a recent publication [Oku94]. However using the measurement procedure of [Mar94] the
organisms are actually not cultivated inside the NMR instrument so that this assumption
is no more required (cf. section 2.4).

5. In the case where analysis of cellular material is performed after the experiment (e.g. from
cell extracts or whole inactivated cells) it must be assured that the measured data is repre-
sentative for the in vivo state of the system (cf. section 2.4).
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Figure 2: The (u�wvyx different ��� C-isotopomers of an ideal molecule z with 3 carbon atoms.
White circles correspond to � & C, black circles to ��� C. When identical scalar coupling constants
between adjacent carbon atoms are assumed (ideal case) the peak patterns in the corresponding
high resolution NMR spectra are schematically shown.

1.6 Isotopomers

Up to now it is not clear, why ��� C labeling has outgrown the classical ��m C technique in the last
years. The reason is that — apart from the intrinsic problems of working with radioactive mate-
rial — much more information can be obtained much easier by using the NMR technique. This
will be explained now in some more detail (cf. [Lon88, JRMS91]).

The main problem of tracer quantitation is to distinguish between labeled carbon atoms at
different positions within one metabolite. To this end in classical carbon isotope approaches the
metabolites had to be extracted and chemically degraded for separating the single carbon atom
positions [SB79, CRSK81, DRM H 93]. In contrary to this time-consuming procedure an NMR
instrument allows to directly localize all ��� C labeled atoms at the same time within a mixture of
substances. This is even possible within intact cells using in vivo NMR (cf. [WdG95]).

Even more information can be obtained with an NMR instrument because so called isoto-
pomers can — at least in part — be distinguished. The isotopomers of a metabolite with { car-
bon atoms represent the (}| possible labeling states in which this molecule can be encountered
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(Fig. 2). It will turn out in section 1.8 that in fact more information about intracellular fluxes can
be obtained from isotopomer data than from positional carbon labeling data alone.

Clearly, isotopomer measurement is beyond the reach of classical methods based on chemi-
cal treatment. Only mass spectroscopy is also capable of distinguishing between isotopomers.
Applications to flux determination are described in [IL87, DRM H 93, KWL93]. However, mass
spectrometry can only distinguish between those isotopomers with different numbers of labeled
carbon atoms while more isotopomer fractions can be quantitated with NMR (cf. 4.6 and Fig. 2).

a) b)

Figure 3: Example networks demonstrating the superiority of tracer experiments for flux deter-
mination compared to methods based on extracellular fluxes alone. a) Two alternate pathways
for producing � can be distinguished based on positional carbon labels. b) Three pathways can
be distinguished based on isotopomers by multiplet measurement.

1.7 The Significance of Fractional Carbon Labeling Data

Clearly, extracellular flux data is directly related to intracellular fluxes by stoichiometric balance
equations. On the other hand it is not clear a priori that labeling data contains any information on
fluxes. A very simple example shown in Fig. 3a makes clear that there are indeed strong relations
between fluxes and fractional labels even in isotopic equilibrium.

The example shows a network with two alternate parallel pathways for the formation of a
product � from a substrate � both with two carbon atoms. The alternate pathways via the intra-
cellular metabolites

�
and � are distinguished by the different fate of the carbon atoms from � .

If a [2- ��� C]-labeled substrate is fed into the system (see Fig. 3a) two different isotopomers of the
product will emerge, one labeled at the first and the other at the second carbon position.

Assume now that the fluxes in the alternate pathways are given by -u~ � -}� and the percentage
of labeling for both carbon atoms of � are given by � � � � & . From this we get:-u~-}� v � �� &
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Consequently the flux ratio can be determined from the label fraction ratio. A similar situation
is encountered within Corynebacterium glutamicum which produces lysine using two different
pathways [SSK H 91]. The above argument was used in [SEdGS93] to quantitate the usage of
these different pathways (see also [WK84]).

Clearly this information cannot be calculated from any direct extracellular flux measurement.
On the other hand the example reveals the general property of tracer experiments that without
(absolute) extracellular flux measurements only flux ratios can be computed. If in the example
the product formation -u� v -u~"��-}� is known in addition we get (notice that � � � � & v�� because
labeling is conserved in the system)

-}~ v�� ��� -}� -u� v�� & � -}�
Of course there would be no measurable effect if the fate of the label would be the same in

both branches. As a rule of thumb the flux information that can be obtained from labeling ex-
periments heavily depends on the extent to which position-changing of carbon atoms occurs.
Fortunately, it happens quite frequently that labeled carbon atoms are distributed over the com-
plete metabolic network. This finally explains why carbon tracers are the most promising isoto-
pes for intracellular flux determination while e.g. ��n N can only be used for special investigations
[KWR88].
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Figure 4: Label scrambling in the citric acid pathway. The symmetric molecules of succinate
and fumarate can freely change their orientation so that labeled carbon atoms finally occur in
two positions of malate with equal probability.

1.8 The Significance of Fractional Isotopomer Data

The example can be further extended for demonstrating that isotopomer measurements can reve-
al even more details about flux distributions. In Fig. 3b another product formation step has been
added that produces � from

�
and � via a bimolecular reaction step. With the indicated [2- ��� C]

substrate labeling this reaction forms a third isotopomer of � with both positions labeled.
The additional flux is denoted by -�� and the isotopomer percentages in � are given as in-

dicated in Fig. 3b by � ) � � � ��� � � � ) (note that the unlabeled isotopomer does not occur). We then
have � ) � � � � ) � � ��� v�� and -u� v -}~���-}����-�� so that:

-}~ v�� � ) � -u� -u� v�� ) ��� -u� -�� v�� ����� -}�
Of course this result cannot be produced with positional carbon atom labeling measurements

alone. On the other hand the carbon labeling state can be reconstructed from the isotopomer
knowledge as

� � v�� � ) � � ��� � & v�� ) � � � ���
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and thus the example demonstrates that isotopomer analysis is always superior or at least equi-
potent to positional carbon label analysis (cf. section 5.4).

Clearly, the presence of a bimolecular reaction step is essential for producing this effect. A
similar situation is encountered in the citric acid cycle where carbon atoms can change positions
within scrambling reactions (Fig. 4). This basically is the phenomenon that is used in [MSJ88,
Lee93] for quantifying citric acid fluxes from isotopomer measurements.

∆ ∆

∆ ∆

G G

E E

Figure 5: Uni- and bidirectional reaction steps from the thermodynamic viewpoint. It depends
on the in vivo free reaction energy ��� and the activation energy � � whether a reaction proceeds
in only one direction or in both directions simultaneously.

1.9 Relations between Stationary and Kinetic Modeling

A short comparison between stationary flux analysis and the investigation of the dynamic be-
haviour of metabolic fluxes in response to changing extracellular conditions shall conclude this
section. Both approaches strongly differ with respect to the experimental procedures and mea-
surement equipment used as well as the results that can be achieved. On the other hand their
common goal is to obtain a quantitative characterization of biochemical reaction steps in vivo.
In both situations very recently a number of powerful new experimental techniques has been
developed (cf. [WdG95]).

With respect to mathematical modeling, dynamic investigations always aim at the develop-
ment and experimental validation of detailed kinetic models of intracellular metabolism (e.g. [DLC H 84,
WBA92]). On the other hand, for the metabolically stationary situation models are required to
compute unknown intracellular fluxes from stationary measurement data. There are some inter-
relations between the stationary and the dynamical approach showing that both are really com-
plementary to each other:G Usually kinetic models approximate the dynamics of metabolism around a certain statio-

nary state [SV91, WBA92]. Consequently, stationary analysis supplies the cornerstones
for dynamic modeling.G No assumptions on kinetic mechanisms have to be made for stationary modeling. Conse-
quently, the results of stationary flux determination are expected to be more reliable than
those from mechanistic modeling.
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G As will be shown in section 4.4 a distinguishing feature of stationary tracer experiments
is their potential for quantifying both directions of a bidirectional reaction step under cer-
tain conditions [WdGA95] (Fig. 5). This may be a valuable information for distinguishing
equilibrating reaction steps from controlling reaction steps in vivo. Moreover, for mecha-
nistic modeling this has the consequence that reversible enzymatic mechanisms have to
be taken into consideration [Seg75, MTBK89, WBA92].G Of course, results from stationary flux analysis are only valid around the investigated me-
tabolic state [VP94b]. On the other hand a validated mechanistic model may expose a
larger prediction horizon and may even be capable of forecasting the effect of genetic mo-
difications. However, in both cases a series of experiments under different conditions has
to be performed in order to obtain a complete picture.

2 Measuring Stationary Intracellular Data

2.1 Extracellular Flux Data

Almost all stationary studies make use of extracellular flux measurements to a certain degree.
If a bioreactor is used for cell cultivation the extracellular fluxes can be calculated using mass
balancing from concentration measurements and the dilution rate. For example HPLC or FIA
instruments, gas efflux measurements and the determination of biomass concentration can be
used for this purpose (cf. [WdG95]).

An important idea was the incorporation of cell mass composition for the quantitation of
the anabolic fluxes that use precursors from central metabolism [Hol86, Val91]. As shown by
[NIS90] the biosynthetic pathways of any cell component can be uniquely traced back to 12 pre-
cursors in central metabolism. These are glucose-6-phosphate, fructose-6-phosphate, ribose-5-
phosphate, erythrose-4-phosphate, glyceraldehyde-3-phosphate, 3-phosphoglycerate, phosphoe-
nolpyruvate, pyruvate, acetyl-coenzyme A, � -ketoglutarate, succinyl-coenzyme A and oxaloa-
cetate. From this knowledge, the knowledge of cell composition and the determined biomass
growth rate a detailed quantitation of the corresponding 12 effluxes from central metabolism is
obtained which dramatically improves the available information.

For convenience many experiments rely on the assumption that biomass composition in mi-
croorganisms is constant over a large variety of metabolic states and microorganisms [Roe83,
Val91]. Of course this assumption deserves great care and ought to be experimentally verified
from time to time though this is a very laborious task.

2.2 Some more Details on NMR Spectra

In order to understand the following modeling considerations some more details on NMR spec-
tra are now briefly sketched at the risk of oversimplification. The reader is referred to [WdG95,
Mat82, Gad82, Lon88, LHHV90] for an in depth discussion of in vivo NMR measurement tech-
niques.

NMR spectra are superpositions of resonance spectra from all resonating atoms within the
sample. In principle each �l� C atom produces a unique resonance peak in the NMR spectrum. Its
frequency position depends on the electro-chemical surrounding of this atom in the metabolite it
is part of. The area of the corresponding resonance peak is directly proportional to the concen-
tration. An example spectrum taken from an in vivo experiment is given in Fig. 8 of [WdG95].

In most cases the ��� C isotopes are not directly observed but � H NMR is used instead as an
indirect measuring technique. The �l� C isotopes then become detectable by a changed resonance
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pattern of the surrounding protons since their � H peaks split up into peaks from � & C-bound pro-
tons and peaks from ��� C-bound protons. This enables the relative amount of labeled carbon
atoms to be determined without knowing the absolute amount of the examined substance. Due
to the low chemical shift dispersion and broad complex multiplet structures � H spectra are much
harder to interpret than ��� C spectra. For this reason metabolites usually have to be purified befo-
re they can be effectively measured with � H NMR [SEdGS93]. An example spectrum is given
in Fig. 6.

The situation becomes even more difficult when high resolution spectra are taken for detec-
ting isotopomers. The underlying phenomenon is that — due to scalar spin-spin-coupling —
a ��� C resonance peak corresponding to some carbon atom splits up into a so called multiplet
peak when adjacent atoms are labeled too. The number of peaks in the multiplet depends on
the number of labeled neighbours so that doublets, triplets, quartets and so on can be observed.
It depends on the specific molecule which spectra will actually result from isotopomers. Fig. 2
schematically shows for an ideal C-3 body how in principle the spectral peaks correspond to
certain labeling states of the observed molecules while Fig. 7 shows what comes out for a real
metabolite (glutamate). However the exact correspondence between isotopomers and spectra in
most cases is known in advance from published NMR data (e.g. [BD85]).

It becomes clear now, why ��� C does not always allow to completely separate between all
possible isotopomers (compare to [KCS93, JSJ H 93, DRM H 93]). For example in Fig. 2 a mixture
of the isotopomers I � )�) and I

)+) � will produce singulet peaks on the first and third position from
which both isotopomer fractions can be quantitated. On the other hand if I � ) � is also present in
the mixture the two peaks cannot been uniquely attributed to the three isotopomers (cf. section
4.6).

Figure 6: Proton NMR spectra of ��� C labeled glutamate extracted from protein of C. glutamicum
after incubation with [1- ��� C]glucose. Lower trace: ��� C-decoupled spectrum showing a) H-2, b)
H-3, c) H-4 protons of glutamate and d) signals from impurities. Upper trace: corresponding ��� C
satellite position signals obtained after subtracting the ��� C-decoupled spectrum from the ”nor-
mal” proton spectrum as explained in [SEdGS93].
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Figure 7: ��� C isotopomer spectra of the ��� C labeled glutamate shown in Fig. 6. Multiplets are
due to scalar coupling with adjacent ��� C atoms (cf. [KCS93])

2.3 Approaches for NMR of Biological Samples

In vivo NMR techniques are reviewed in [WdG95] so that only the most important facts are
summarized here. The principal problem associated with NMR of biological samples is its low
sensitivity compared to other techniques like mass spectroscopy. The quality of an NMR signal
depends on the measurement duration for producing the spectrum and the amount of labeled ma-
terial within the sample. For isotopomer quantitation, high resolution spectra are required while
a lower resolution may be sufficient for determining only positional carbon enrichment. If the
isotopically instationary state has to be observed the measurement duration for one spectrum
is strongly limited resulting in generally low signal to noise ratios. These problems have been
partly overcome in the last years by the development of more powerful NMR instruments, the in-
creased availability of ��� C labeled substrates and the experimental techniques that are described
in the following.

The strongest in vivo NMR signals are obtained when the volume of the NMR receiver coil is
completely occupied by cellular material as is approximately the case in many studies on perfu-
sed organs [MSJ88, DRM H 93]. In this situation ��� C NMR spectra with acceptable signal to noise
ratio can be produced in less than a minute for metabolites in the milimolar concentration range.
This allows time courses [CFGC95] and even isotopomers to be observed [MSJ88, KCS93].

In contrast to mammalian organs, microorganisms expose much higher oxygen demands and
faster growth rates. As a consequence even in hollow fiber bioreactors well suited for high den-
sity cultivation of mammalian cells they cannot be maintained in such high concentrations and
in a well defined reproducible and stable physiological state (cf. [WdG95]). One way to over-
come these problems was to take concentrated cell suspensions [WHK H 82, WK84, dHUB H 86].
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However
�

it is doubtful if such results are representative for the in vivo state.
The best systems presently available for in vivo NMR studies of microorganisms under truly

well defined stationary conditions in continuous culture are specially developed continuous flow
NMR bioreactors [dGWP H 92, Har95]. In such reactors cell densities of up to 30-50 g/l (dry cell
mass) can be maintained and measured on line with in vivo NMR. These systems are very well
suited for monitoring time courses of ��� C label incorporation [WdG95]. On the other hand the
obtained spectral quality is still not optimal for isotopomer determination.

When mixtures of labeled substances are measured — as is always the case with whole cells
— a great many signals of different compounds in widely differing concentrations can be found
in the spectrum. In particular for low resolution spectra the peaks may significantly overlap
[SB88]. This poses the problem of spectral deconvolution for disentangling the resonances and
computing the peak areas. Several numerical methods have been developed to treat this problem
[DAM88, NS89, MTG94, WMWdG95].
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Figure 8: Decoupling production of labeled material from measuring by protein hydrolization
after cultivation. Amino acid fractions are obtained by preparative separation methods.

2.4 Decoupling Production of Labeled Material from Measuring

An important idea for improving the NMR signal quality was to decouple the biological labeling
experiment from the NMR measuring process. Taking samples and extracting intracellular meta-
bolites is in general not sufficient because most substances are far too low concentrated (usually
below 1 mmol) to produce an NMR signal. A successful approach is to take advantage of the
cells own anabolism, i.e. of the fact that most intermediates are finally stored in cellular com-
ponents like protein, lipids, RNA or DNA. In this form they are hidden from NMR observation
but can be extracted by hydrolization in combination with preparative analytic measures (Fig. 8).
Several authors report the extraction of glycerol from lipids [ESS83, CB83, RB85], ribonucleoti-
des from RNA/DNA [ESS83, ESW H 93] and amino acids from protein [ESS83, SEBF92, Mar94,
PWK94].

The obtained fractions can be kept in the NMR instrument for an arbitrarily long time so that
high resolution spectra and even multiplet peaks can be observed [SEBF92]. It is a great advan-
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tage
º

of the stationary approach that no absolute pool concentrations are required (cf. section 4.7)
and mass deficiencies occurring during the separation process do not change the labeling fracti-
ons in the sample. On the other hand the isotopically instationary states cannot be reconstructed
with this technique.

Clearly, the largest amount of quantitative information can be taken from the amino acids be-
cause they are synthesized from precursors at many different positions in the central metabolic
network. From their labelling state the fractional enrichment of their pecursors can be imme-
diately derived. Most of these precursor pools are inaccessible with other methods because they
are too lowly concentrated in vivo. This technique has firstly been used in a quantitative man-
ner in [MdGW H 95] which at the same time is the first application of the tracer technique to a
continuously cultivated microorganism.

As pointed out in section 1.5 it must be assured that the measured data is representative for
the in vivo state of the system. In particular the isotopically steady state of the system has to
be guaranteed [BS82, ESW H 93]. This is a nontrivial problem since at the time when the inter-
mediary metabolic pools have reached an isotopicically stationary state after switching to the
labeled substrate this still does not hold for the cell components. The reason is that the cell mass
in the bioreactor is originally unlabeled. However, after several cell residence times unlabeled
cell material is washed out until finally the fractional labeling in the cell protein is representative
for the in vivo state. On the other hand only a limited number { of residence times can be awaited
for financial reasons, which can be corrected by the washout correction factor [MdGW H 95]

WCF »�¼¾½v ��À¿ÂÁuÃ | � (1)

3 Modeling of Metabolic �,Ä C Labeling Systems

3.1 Modeling Frameworks for Tracer Experiments

In order to evaluate the data sets from ��� C labeling experiments a model has to be formulated
that quantitatively describes the relations between fluxes and ��� C labels. This model can then be
fitted to the measured extracellular fluxes and intracellular fractional labels.

Carbon isotope labeling studies fall within the general category of tracer experiments. Ge-
neral models and mathematical tools for tracer analysis have already been developed in the se-
venties; an excellent textbook is [And83]. However there are some new aspects in metabolic
carbon isotope labeling systems compared to general linear tracer systems:G In “classical” applications of tracer experiments the model contains only a few pools (usual-

ly less than 10) and only one or two of them could be observed [LR83]. This is compen-
sated by the availability of isotopically instationary observations (i.e. time courses). In
the case of metabolic systems the situation is frequently quite different because a larger
number of pools can be observed but only in the isotopically stationary state.G Each metabolic reaction step induces several carbon atom transitions that take place with
the same reaction rate. This allows to impose further constraints on metabolic tracer sy-
stems that are not given in the general case.G The intracellular labeling state can be independently influenced by the forward and back-
ward flux of a bidirectional reaction step (see section 4.4). Although this effect is well
known for general tracer systems [And83, LR83] it has seldom been taken into account
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for metabolic networks in large extent [SB79, CB83, KC83, CFGC95]. Thus, bidirectio-
nal steps should be conceptionally integrated into a general modeling framework [SSH92,
WdGA95].G Isotopomer dynamics cannot be handled within the framework of linear tracer kinetics
because quadratic equations are required to describe the system (see section 3.11). On the
other hand they still expose some general structure that can be formalized using a concise
matrix notation from [Wie95c].

In the context of network modeling and data evaluation it is advisable to set up a general
modeling framework for studying arbitrary nets and to facilitate variational studies. A so called
structural system representation using matrix notation for separating network properties from
flux and label variables greatly facilitates the development of general mathematical tools for si-
mulation and system analysis [Red88, Wie95b]. However, only in a few cases a general struc-
tural modeling approach has been taken [HS93, ZS94, MdGW H 95]. The modeling framework
presented below is based on the general linear tracer model [And83, BS82] while general mode-
ling of exchange rates is done as in [MdGW H 95] and basic equations for isotopomer balancing
taken from [Wie95c].

3.2 Constructing the Biochemical Network

Constructing a model for labeling systems requires the knowledge of all biochemical reaction
steps in the network under consideration and moreover the fate of all carbon atoms within each
reaction step. A simple formal notation first introduced in [WdG93] is used here to represent
this information. It is derived from the familiar chemical sum notation presented in [VS93] and
can be later used for automatic model generation. As an example the transaldolase step in the
pentose phosphate pathway is written as:Å �	ÆÈÇÉ� � � ��Êu� Ë �ÍÌÎ� � ÏÍÐ �ÑÒ� �Ó
 � Ñ:ÔuÕ×ÖÙØÛÚ�Ü¾Ý Ë ÑÒØÛÚ�Ü¾Ý � ÑÒÔ}Õ×ÖÙ� �Ó

This means that the first carbon atom of

ÇÉ� � (denoted by the sign
Ñ

and the capital letter
�

) is
taken over to the fourth carbon atom of ÏÞÐ � and so on.

Some bimolecular reaction steps require consideration of two molecules of one substance.
This is conveniently expressed by including this substance two times and denoting the dupli-
cate carbon atoms with different symbols. E.g. the conversion of fructose 1,6-bisphosphate to
glyceraldehyde 3-phosphate is simply written as�Éß � Æ Ï � Ð �À� Ë ÇÉ� � � ÇÉ� �ÑÒ� �Ó
à��� Ï Ë Ñ 
à� � � Ñ �É� Ï
Scrambling reactions (Fig. 4) are usually assumed to be symmetric, i.e. both scrambling steps
have equal probability. Thus the situation shown in Fig. 4 can be easily expressed by:��
àá Æ �/â

À
À
Àã � � �/â

À
À
Àã � Ë ä ��ß � ä ��ßÑÒ� �Ó
à� � Ñ âÓå�æèç Ë ÑÒ� �Ó
à� � Ñ ç�æèåéâ ê
3.3 Noninteger Stoichiometric Coefficients

Sometimes non-integer coefficients have been used to represent further knowledge on metabo-
lic networks [Roe83, VS93]. The most important example is biomass composition that can be
represented by a biomass formation “reaction”. However, such equations make no sense when
carbon atoms have to be traced through the network. Fortunately, they can be replaced by a set



18

1

1

1

1

1

1

1

1
2

2

2

2

2

2

3
ë

3
ë

4

2
ì

Figure 9: An example for demonstrating metabolite, carbon labeling and isotopomer balancing.
a) metabolite network, b) carbon atom network, c) isotopomer network under the assumption
that all steps are unidirectional and the input is labeled as indicated. In this situation only 13 of
the 48 possible isotopomers are really produced.
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of equations that describe the incorporation of each singular precursor metabolite into biomass.
E.g. incorporation of glucose 6-phosphate into biomass is written asÇ Ð ���Àä Æ Ç Ð � Ë Ç Ð ���"í#îðï Ô�ñ>ñÑÒ� �Ó
à��� Ï Ë ÑÒ� �Ó
à��� Ï
The corresponding “non-integer coefficient” is then supplied separately as a flux measurement
value for

Ç Ð ���Àä computed from biomass composition and growth rate. This is in any case the
more natural way to account for biomass composition.

When no labeling data is available the measured carbon fluxes are usually not sufficient for
determining the unknown intracellular fluxes from the stoichiometric balance equations. In this
situation further assumptions have to be made [Val91], or other types of balances have to be
considered in addition. As an example of an additional assumption some enzymes like the malic
enzyme have been assumed inactive in [Val91]. On the other hand flux balancing is extended
by considering energy metabolism (i.e. ATP, NADH or NADPH) in [Roe83, VS93, GFJA93,
Jor95].

Usually the production of ATP from NADH is assumed as a reaction step with known stoi-
chiometry. However, it should be noticed that oxidative phosphorylation is not based on a me-
chanism with fixed stoichiometry and only few things are known on its thermodynamic efficien-
cy in vivo [Roe83, WvD87]. Moreover the possibility of futile cycling makes NADH, NADHP
and ATP balancing a delicate problem [CF80, dHBS81, RB85, Pat92, CL94, CMCM H 94]. The
same holds for direct energy balancing based on free reaction energies [Roe83] which may hea-
vily depend on the physiological situation, i.e. ��� ) values cannot be directly taken over to the
in vivo situation (cf. [Mav93] and Fig. 5).

3.4 An Example System

In the following a simple example system taken from [Wie95c] is used for introducing the va-
rious balances that have to be formulated. It is chosen to demonstrate several general features
of labeling systems with as few metabolites as possible. The reaction steps and carbon atom
transitions in the system are given in the introduced formal notation by:ò � Æó� Ë �Ñ �,( Ë Ñ �Ù(ò ( Æ � Ë �Ñ �,( Ë Ñ �Ù(ò Ä Æ � � � Ë 
Ñ �,( � Ñ ÄuÌ Ë Ñ �Ù(ðÄuÌò Ì Æ � Ë ôÑ �,( Ë Ñ �Ù(

òöõ Æ � Ë ÷Ñ �Ù( Ë Ñ �,(òöÐ Æ 
 Ë � � ÏÑ �Ù(ðÄuÌ Ë Ñ (�Ä}Ì � Ñ �ò Ê Æ � Ë � � ÇÑ �Ù(ðÄ Ë Ñ �,( � Ñ Ä
Three networks are associated to this system [Wie94b]. The metabolite network is shown in

Fig. 9a, the carbon network in Fig. 9b and a small section of the isotopomer network in Fig. 9c.
It becomes clear that even for small systems isotopomer networks can become quite complex.
For this reason a “full sized” section from central metabolism is completely unsuitable as an
example.

However, the example network bears resemblance to the citric acid cycle in connection with
the anaplerotic reaction section. It should be noticed that carbon atoms change their position
after one turn in the citric acid cycle while they remain unchanged within an anaplerotic step.
These properties are exposed by the example network too but much fewer carbon atoms are re-
quired.
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3.5
ø

Simplification of the Example System

To further reduce the number of isotopomers in the example system it is transformed now to an
equivalent simpler system shown in Fig. 10. The idea behind this simplification is to backtrack
the product carbon atoms Ï Ñ � and

Ç�Ñ � through the system. Obviously, it makes no difference
if these atoms are already split off from � Ñ � and � Ñ ( instead of 
 Ñ � and � Ñ Ä . This allows
to remove 
 Ñ � , � Ñ Ä and 
 Ñ Ì from the system. Finally,

Ç
and 
 can be completely removed

because nothing splits off at these stages. The remaining network now is composed from ò � , ò ( ,ò Ì , òöõ and the changed reaction stepò Ä Æ � � � Ë � � Ï � ÇÑ �Ù( � Ñ Ä}Ì Ë Ñ (�Ä � Ñ � � Ñ Ì
Although this network looks strange, all quantities related with the original network shown

in Fig. 9 can be reconstructed from the following computations based on the reduced system.
This emphasizes that network reduction is an important task whenever isotopomers have to be
accounted for. The considerations made above give some impression of the typical simplifica-
tion operations used in literature to reduce network complexity.

3.6 Flux State Variables

In the following the values of the metabolic fluxes ò � ,...,ò�õ are denoted by corresponding va-
riables - 7Óùûú

. More precisely, two variables -Û.7 � -ü07 have to be introduced representing each
forward and backward flux direction (Fig. 5). Clearly, if a reaction step is irreversible, one of
these fluxes is zero. In the example it will be assumed that the uptake and product formation
steps ò � , ò Ì and òöõ are irreversible (a familiar modeling assumption) as well as the intracellular
step ò Ä . On the other hand ò ( is assumed to take place in both directions.

In order to comprise the forward and backward directions of all molar fluxes in the reaction
network the vectors3 . vþý -/.� � -Û.& � -Û.� � -/.m � -/.n ÿ and 3 0 vþý -ü0� � -ü0& � -ü0� � -�0m � -�0n ÿ
(of equal dimension) are introduced. The additional irreversibility assumptions are given by- 0� v - 0� v - 0m v - 0n v ú �

The physical unit of fluxes is strictly taken to be [mol/h]. The reason is that a chemical re-
action step does not only take over substrates to products but also substrate carbon atoms (re-
spectively isotopomers) to product carbon atoms (respectively isotopomers). Clearly, if the unit
[mol/h] is chosen, the same flux values -/.7 � -�07 can serve for representing metabolite fluxes as
well as carbon or isotopomer fluxes.

Finally, from the vectors 3 0 � 3 . the composite overall flux vector

3 v � 3 .3 0��
(of twice the dimension) and the corresponding net flux vector3 net v 3 . ¿ 3 0
is formed (notice that with standard measurement equipment only some of these net fluxes can be
observed). Clearly, all components of 3 must be nonnegative which is expressed by the component-
wise inequality 3 ù�� �
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3.7
ø

Pool State Variables

The labeling state is always represented by the percentage of labeled material at all carbon atom
positions. Only the intermediary metabolites and the metabolites fed into the system have to
be accounted for balancing. For denoting the label fractions within a metabolite like � small
indexed letters

% � ��%'& are used. In general all intermediary carbon atom pools under consideration
have to be enumerated. This gives rise to the fractional label variables 1 7��	� ú � ��
 and the overall
labeling vector 1 . In our case only � and � are intermediates such that1 v
� % � ��% & � Á � � Á &���� �

A special type of carbon atoms are those that fed into the system as a metabolic substrate be-
cause their labeling state is known a priori. These atoms are enumerated likewise and comprised
to the constant input labeling vector 1 inp v
��� � � � &�� � �

When isotopomers are considered the situation is much more complex. We distinguish bet-
ween the isotopomer fractions of one metabolite by using a binary number that specifies, which
carbon atoms are labeled [FR95]. For instance the ( & vèÌ isotopomer fractions of � are denoted
by

%*)+),��%*) � ��% � ),��% �+� . Since carbon atoms and isotopomers cannot be confused in the following the
symbol 1 is used again to denote the isotopomer fraction state vector

1 v
� %>)�)Ù��%>) � ��% � )Ù��% ��� � Á )�),� Á ) � � Á � )Ù� Á ��� � � (2)

and the relations %*)+) � %>) � � % � ) � % ��� v��Á )�) � Á ) � � Á � ) � Á �+� v��
% � ) � % ��� v % �%>) � � % ��� v %'& Á � ) � Á ��� vBÁ �Á ) � � Á ��� vBÁ & (3)

always hold between isotopomer and carbon label fractions. As in the carbon atom case, the
vector 1 inp of input isotopomers has to be defined as:1 inp v���� )�)Ù� � ) � � � � )Ù� � ��� � �

Finally, the modeling of isotopically instationary experiments requires the knowledge of ab-
solute molar pool sizes. For a specific metabolite they are denoted by capital italic letters like

�
for the pool size of � . In the general model the corresponding pool variables are comprised to
the vector 2 v
� ����� � �
3.8 Metabolite Balance Equations

Several types of material balances can now be formulated for each intracellular pool using the
introduced state variables. The first is the well known stoichiometric balance equation [Hof86]
that holds for the fluxes participating in one metabolite pool. Because the absolute pool sizes
do not change in a metabolic stationary state the sums of incoming and outgoing fluxes must be
equal. In the example the stoichiometric balance equations corresponding to the intermediary
metabolite pools are: � Æ - .� ��- 0& v - .& ��- .� ��- .n� Æ -/.& ��-/.� v -ü0& ��-Û.� ��-/.m (4)
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By
�

introducing the stoichiometric matrix4 v � � ¿�� ¿�� � ¿	�� � �û¿�� � �
this can be more conveniently expressed as� v 4 � 3 net � (5)

3.9 Stationary Carbon Label Balance Equations

When carbon atom labeling is considered a carbon label balance can be written for each interme-
diary carbon pool. In this situation the above reaction system should be interpreted as a system
of carbon atom transitions:ò � Æ �
Ñ � Ë � Ñ �ò � Æ �
Ñ ( Ë � Ñ (ò ( Æ � Ñ � Ë � Ñ �ò ( Æ � Ñ ( Ë � Ñ (

ò Ä Æ � Ñ � Ë Ï Ñ �ò Ä Æ � Ñ ( Ë � Ñ �ò Ä Æ � Ñ � Ë � Ñ (ò Ä Æ � Ñ ( Ë Ç�Ñ �
ò Ì Æ � Ñ � Ë ô Ñ �ò Ì Æ � Ñ ( Ë ô Ñ (òöõ Æ � Ñ � Ë ÷ Ñ �òöõ Æ � Ñ ( Ë ÷ Ñ (

The carbon label balance for � Ñ � is constructed now as follows: The amount of labeled material
that is carried over to � Ñ � by the incoming flux ò � from

�
Ñ � and the backward flux of ò ( from� Ñ � is given by -Û.� � � � � -�0& � Á � . On the other hand the outgoing fluxes ò ( , ò Ä and ò�õ take
the amount of � - .& � - .� � - .n � � % � out of � Ñ � . If the complete system is assumed to be in
isotopically stationary state the following set of carbon label balance equations comes out:% � Æ -/.� � � � � -�0& � Á � v � -Û.& �É-/.� �É-/.n � � % �%�&ÀÆ -/.� � � & � -�0& � Á & v � -Û.& �É-/.� �É-/.n � � %'&Á � Æ - .� � %�& � - .& � % � v � - 0& �É- .� �É- .m � � Á �Á & Æ -/.� � Á � � -/.& � %'& v � -ü0& �É-/.� �É-/.m � � Á & (6)

Again this can be more conveniently expressed using matrix notation as���������
����� � ������� !#""$�% !"&""&"

�����('*),+ !+.-0/1 ����32 �% - 2 �� 4 2 �% 5 " �76- "" 2 �� - 2 �� 4 2 �� 5 " �.6-�% - �% 4 2 �76- 2 �% 4 2 �% 8 "" �% - �� 4 2 �.6- 2 �% 4 2 �% 8
� ��� ' �����9 !9 -: !: -

� ���
Here the input labels � � � � & are separated from the intermediary labels. Clearly, this equation has
the general structure� v 6 inp � 3 � � 1 inp � 6 � 3 � � 1 v
��; 7 3 7 � 6 inp7 � � 1 inp � ��; 7 3 7 � 6�7 � � 1 (7)

where
6é7 � 6 inp7 are called the atom transition matrices [WdGA95] (compare to the closely related

atom mapping matrices in [ZS94]). For example we have:<  - � ���� 2>= "
"
"" 2>= "
"= "
"
"" = "
"
�����@? < 6- � ���� "
" = ""
" " ="
" 2>= ""
" " 2>=

�����@? < inp! � ���� = "" =" "" "
�����
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3.10
ø

Instationary Carbon Label Balance Equations

If the system is not in isotopic equilibrium a differential equation system has to be formulated.
In this situation the absolute pool sizes

2BA
play a role because they determine the capacity of

a pool for labeled material. In the example the absolute amount of labeled material in the first
position of � is given by

� � % � so that C*DECGFH� � � % � � v � � C*D7CGF % � when the system is in a
metabolic stationary state. This term has to be added to the label balance equation at stage � Ñ �
in Eq. (6).

In order to get a general matrix representation similar to Eq. (7) a matrix
;

is constructed
that enlarges the vector

2
to the dimension of 1 by appropriately repeating its entries. In the

example:

; � 2 »�¼¾½v
����� � �� �� �� �

� ���� � � � � v
����� �� ��

� ����
Putting all parts together we get the instationary balance equation system

diag � ; � 2 � � CCGF 1 v 6 inp � 3 � � 1 inp � 6 � 3 � � 1 (8)

where diag � ; � 2 � is the diagonal matrix constructed from the vector
; � 2 .

3.11 Isotopomer Balance Equations

When isotopomers are considered the situation is more complicated because the number of educts
involved in a reaction step determines the (algebraic) order of the reaction equation. In the ex-
ample the reaction step ò Ä has two substrates so that at the isotopomer level all reactions
may happen. Clearly, the probability of two isotopomers with fractional amounts

% 7
and

% A
to

meet in step ò Ä is given by
% 7 � % A [KCS93]. Consequently, the corresponding total isotopomer

flux is - .� � % 7 � % A . Thus isotopomer balancing for bimolecular steps leads to bilinear terms with
respect to the 1 7 while for the monomolecular steps ò � , ò ( , ò Ì and òöõ and the effluxes from each
pool all terms in the corresponding balance equations are exactly analogous to those in Eq. (7)
respectively Eq. (8). The complete equation system then is:
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%*)+) Æ -/.� � � )+) � -�0& � Á )�) v � -/.& � -/.� �É-/.n � � %>)�)%*) � Æ - .� � � ) � � - 0& � Á ) � v � - .� � - .& �É- .n � � %>) �% � ) Æ -/.� � � � ) � -�0& � Á � ) v � -/.� � -/.& �É-/.n � � % � )% �+� Æ -/.� � � �+� � -�0& � Á ��� v � -/.� � -/.& �É-/.n � � % ���Á )�)ÓÆ -/.& � %*)+) � -/.� � � %*)+) � % � ) � � �+Á )�) � Á ) � � v � -�0& � -/.� �É-/.m � � Á )�)Á ) � Æ -/.& � %*) � � -/.� � � %*)+) � % � ) � � �+Á � ) � Á ��� � v � -�0& � -/.� �É-/.m � � Á ) �Á � )ÓÆ -/.& � % � ) � -/.� � � %*) � � % ��� � � �+Á )�) � Á ) � � v � -�0& � -/.� �É-/.m � � Á � )Á ��� Æ - .& � % �+� � - .� � � % ) � � % ��� � � �+Á � ) � Á ��� � v � - 0& � - .� �É- .m � � Á ���
Again a comprehensive matrix notation is desirable. Clearly, the linear terms in 1 can still be

expressed with the matrix notation introduced in Eq. (7). On the other hand the bilinear terms in1 are represented by introducing one symmetric matrix for each balance equation. For example
the Á �+� step can be written as follows:

: !�!]\ � � =^ ' �  4 '
������������
9`_�_9`_ !9 ! _9 !�!: _�_: _ !: ! _: !�!

�������������
a
'
������������
" "b"c"b"
"d"c"" "b"c"b"
" =d=" "b"c"b"
"d"c"" "b"c"b"
" =d=" "b"c"b"
"d"c"" "b"c"b"
"d"c"" = " = "
"d"c"" = " = "
"d"c"

������������� '
������������
9`_�_9`_ !9 ! _9 !�!: _�_: _ !: ! _: !�!

�������������
1 �% - ' 9 !�!2$e �76- 1 �% 4 1 �� 80f ' : !�!

The symmetric matrix in this equation will be denoted by
9 .�hg ��� indicating the flux number and

the target pool. All such matrices
9:7 g A corresponding to the same flux variable 3 7 can then be

composed to a 3-dimensional matrix structure (i.e. a tensor)
9:7

(which may be thought of as a
vector of square matrices) and a 3D-matrix-times-vector product can then be defined as

1 � � 9 7 � 1 v 1 � �
������ 9:7 g �9:7 g &...9 7 g |

������� � 1 »�¼ ½v
������ 1 � � 9:7 g ��� 11 � � 9:7 g & � 1...1 � � 9 7 g | � 1

������� �
Using this notation the isotopomer balance equations can finally be written quite similar to Eq. (7)
as [Wie95c]: � v 6 inp � 3 � � 1 inp � 6 � 3 � � 1 � 1 � � 9 � 3 � � 1v ��; 7 3 7 � 6 inp7 � � 1 inp � ��; 7 3 7 � 6�7 � � 1 � 1 � � ��; 7 3 7 � 9:7 � � 1 (9)

Input 3D-matrices analogous to
6 inp are not required because it can be assumed without loss

of generality that any substrate enters the system via a monomolecular uptake step. It should be
clear now how in principle reactions with more than two substrates can be represented. However,
since such reaction steps can in practice be replaced by successive bimolecular reactions it is not
necessary to introduce matrices with dimension higher than three. Finally, the instationary state
equations are constructed completely analogous to Eq. (8).

Interestingly, isotopomers have always been considered in connection with the citric acid
cycle [CSKW83, KWL93, KCS93, FR95] where essentially only one bimolecular step occurs
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at the entry point of acetyl-coenzyme A. Since the labelling state of the input isotopomer is
known the equations for the citrate cycle can be essentially written without any truly bilinear
term (i.e.

9:7 v ú
for all 8 ). This reduces the equation system to a linear model with respect to1 which can be mathematically treated with the same methods as the ordinary carbon labelling

system in Eq. 7 [CSKW83].

4 Simulation and Data Analysis

4.1 Network Synthesis

As shown above all model equations required for describing the isotope and isotopomer labe-
ling system can be built up from certain vectors and matrices. However, the dimensions can
become quite large. When the whole central metabolism including glycolysis, pentose phos-
phate pathway, citric acid cycle, glyoxylate shunt and anaplerotic reaction section is included
the metabolic network has about 25 metabolite fluxes between 20 metabolite pools, 120 carbon
fluxes between 80 carbon atom pools and 3.200 isotopomer fluxes between 600 isotopomer pools
[Sch95, CFGC95]. This makes clear that computer aided tools for network synthesis and consi-
stency checking are absolutely necessary. In particular model variation studies would be quite
time-consuming when using manual input.

Most authors used highly specific programs for simulation or data analysis [CB83, JRMS91,
KCS93] or general systems based on explicit equation input [WGKF H 92, Lee93]. Only a few
general tools for carbon or isotopomer network synthesis have been designed based on explicit
matrix input to generate the system equations [ZS94, HSG H 93]. However, for large systems
network synthesis from either matrix or balance equation input is still not satisfying while for
isotopomer systems this effort is almost prohibitive (cf. [CSKW83]).

A more convenient way for network synthesis is to write a compiler program for translating
a minimal formal input like that presented in section 3.2 into the corresponding matrix struc-
tures. For metabolite flux networks several such programs are known [MSS90, Val91, Hof93]
while for carbon atom and isotopomer networks the program NMRFlux described in [Wie94a] is
currently the only implementation. The corresponding algorithms for isotopomer network syn-
thesis are described in [Sch95]. Clearly, the input for other matrix- or equation-based simulation
or computer algebra systems can be easily generated once a matrix representation is available
[Wie94a].

An important feature of a network synthesis program is its ability to check formal consistency
conditions. In [Wie94b] some criteria have been given that lead to consistent networks. In most
cases it is sufficient to check the following criteria for detecting typing errors in the textual input:
i) Any carbon atom of an educt must appear exactly once on the product side and vice versa, ii)
each molecule must have the same number of carbon atoms within each equation, iii) input and
output metabolites always occur in a monomolecular reaction.

4.2 Simulation

Simulation of �l� C labeling experiments means to predict the outcome of an experiment when
all fluxes 3 are known. For this purpose values for the components 3 7 must be given in a way
that the constraints imposed by the stoichiometric equations are respected. Usually the user of a
simulation program wishes to fix certain values while others are varied in each simulation run.
This process can be supported by appropriate software tools [Wie94a].
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Assume now that a suitable vector 3 ùi�
is given. Simulation of ��� C labeling experiments

then can proceed in different ways:

1. For isotopically instationary experiments the ordinary differential equations (8) associa-
ted to carbon or isotopomer fluxes have to be solved. For non-stiff systems a higher order
Runge-Kutta scheme is well suited [HNW87]. On the other hand when highly reversing
reactions occur the differential equation system will tend to become stiff. Specialized sol-
vers [CSKW83, HW91], the preliminary introduction of rapid equilibria by pool lumping
[SSH92] or the preliminary reduction of the network size [CB95] may solve these pro-
blems.

2. It is well known that linear tracer systems are globally stable except from some pathologi-
cal situations because the corresponding system matrices

6 � 3 � are diagonally dominant
[And83]. From this the negativity of all eigenvalues can be concluded. For the isotopo-
mer equation system it can be likewise shown [Wie95c] that its linearization is diagonally
dominant in any point

�kj 1 j�l . Such systems are called dissipative and can be proven
to be globally stable too [MN91]. As a consequence the stationary state can always be
computed using a differential equation solver as an iterative procedure.

3. Clearly, when only the stationary solution is of interest differential equation solving is in-
efficient because the transient states are of no interest. In particular the treatment of iso-
topomer systems can be time-consuming because of their high dimensionality. Modify-
ing the well known Euler scheme by introducing relaxation leads to the iterative schemes
for linear and nonlinear equation solving [BL94, Deu95]. In particular the Gauss-Seidel-
Algorithm is used in [ZS94] for solving the linear carbon labeling balances and in [Sch95]
to solve the isotopomer balances. In any situation the sparsity of the involved matrices can
be exploited to speed up the computation.

4. In the case of carbon labeling systems equation (7) can be explicitly solved for the vector1 because
6 � 3 � is invertible (which follows from its diagonal dominance) [BS82]:

1 v 1 � 3 � v ¿[��; 7 3 7 � 6�7 � Ã � ��; 7 3 7 � 6 inp7 � � 1 inp (10)

It is well known that up to a dimension of about 100 the iterative solution of linear equation
systems cannot compete with direct methods even when sparse matrix representations are
used [Hac93]. This turned out to be true for labeling systems too [Sie95]. When a high nu-
merical stability is required a QR factorization method accompanied by a preconditioner
[Sie95] or an explicit monitoring of the condition number [FR95] is better suited.

4.3 Computing Explicit Solutions

In our example the stationary carbon labeling equations as well as the isotopomer equations can
be solved explicitly using computer algebraic methods. For simplicity we henceforth assume
that the input substrate is labeled at the second position, i.e.� � v ú � & vE�
or when expressed with isotopomers� )+) v ú � ) � vE� � � ) v ú � ��� v ú
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To start with the calculation the stoichiometric equations (4) are used to eliminate the flux
variables -/.� and -/.m : -Û.� v -Û.� ¿ -/.& �É-ü0& ¿ -/.n-Û.m v -/.& ¿ -�0&
The resulting stationary carbon atom labeling fractions can then be obtained from Eq. (10) as:% � v -ü0& � � � � & DÞ� )%�& v � � DÞ� )Á � v � � � & � m DÞ� )Á & v � n DÞ� )
with the auxiliary terms � 7 shown below.

For the isotopomer fractions the computation is much more difficult and in general impossi-
ble because the corresponding equation set is essentially nonlinear with respect to 1 . However,
in this special case the computer algebraic methods discussed in 5.3 help to compute the explicit
result with the aid of a computer algebra system:%*)�) v �À¿ % � ) ¿ %*) � ¿ % ���% � ) v -Û.& -ü0& � � � � & ��m�DÞ� &)%*) � v � & ��n�DÞ� &)% ��� v -ü0& � � &� � && � m DÞ� &)

Á )+) v � ¿ Á � ) ¿ÂÁ ) � ¿ÂÁ ���Á � ) v -/.& � � � � & � m �om�DÞ� &)Á ) � v -/.& � �VpqDÞ� &)Á �+� v � &� � && � &m DÞ� &)
withr _ � �% ! 41 �% ! - ' ets �.6- 2 ^ �% 5uf1 �% ! ' ets �.6- - 2[v �.6- �% 5 1 �% 5 - f1 �.6- ' e �76- - 2 ^ �.6- �� 5 2 �% - - 1 �% 5 - fr ! � �� !w2 �% - 1 �76- 2 �% 5r - � �� ! 1 �.6- 2 �� 5r 4 � r _ 2 �% - �.6- r !

r 8 � �� ! 1 �76-r 5 � r _ 2 �% - r ! r 8ryx � �� ! - 1 �% ! ' e ^ �76- 2 �� 5Pf1 �76- ' e �76- 2 �% - 2 �� 5 fryz � r _ ryx 1 �% - �.6- ' e ^ ryx �% - 2 r _ 2 �� ! �� - - fr*{ � ryz 2 �.6- r 4 ! r 8
4.4 Explicit Flux Determination

Assume now that the flux values -Û.� and -Û.n can be directly measured and additionally the labels% � ��%'& are available. Then the remaining unknown intracellular fluxes -/.& � -�0& must be determined
for reconstructing the whole system state. From the balance equations (6) the explicit solutions

- 0& v - .� � |~} �� | } Ã | �`��� � | } H | � Ã � �-/.& v � -Û.� ��-ü0& ¿ -/.n � � � Ã | }| � (11)

can be computed. The nonlinear mapping� - 0&- .� � - .&- .� ��- 0& ¿ - .n � � Ã ��B� � % &�� %'& ¿ % � � � � %'& � % � ¿è� � � � ¿ % &% � �
thus can be used to visualize the correspondence between unknown fluxes and measured labels
by a superposition of two contour plots (Fig. 11). A similar technique has been also used in
[ZS94] as a graphical tool for flux estimation and sensitivity analysis.
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An important observation can be taken from the example: Both directions of the reversible
reaction step ò ( have been identified from labeling data. This proves once more that ��� C NMR
labeling experiments are considerably more powerful that experiments that are solely based on
metabolite balances. This observation motivates a more detailed consideration of bidirectional
reaction steps in the next section.

It turns out that in the example situation isotopomer measurements are not necessary for flux
determination. However, it is an interesting question, if this is still true, when the measurement- .n is no more available. In this situation the surplus values

% ��� and Á ) � � Á � )Ù� Á ��� may contain
more information on the unknown fluxes. This question will be answered in section 5.4.
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Figure 11: Superposition of two contour plots illustrating the computation of unknown intra-
cellular fluxes from fractional labeling data. When two extracellular fluxes are assumed to be
measured as -Û.� vy�ð� ú and -Û.n v ú � õ and measurements of

% � ��%'& are available the unknown
fluxes -Û.& and -ü0& can be read off from the diagram.

4.5 Exchanging Reactions

When doing simulation studies on the influence of exchanging reactions it quickly becomes clear
that forward and backward fluxes are well suited for formulating the balance equations (7) or
(9) but rather inconvenient for expressing assumptions on exchange rates. To this end a more
suitable coordinate system has to be found in which a forward/backward flux pair 3 .7 � 3 07 is
described in terms of the net flux rate 3 net7 and an appropriate exchange flux 3 xch7 . In [SSH92]
the quantity 3 xch7 v 3 .7 � 3 07 is suggested for investigation of the system’s behaviour when3 xch7 � � (rapid equilibrium situation). However, this quantity is not convenient for describing
irreversibility (i.e. 3 .7 v ú

or 3 .7 v ú
) because it depends on 3 net7 in this situation. Another

definition from [MdGW H 95] that serves better for expressing irreversibility assumptions (but is
rather inconvenient for analytical purposes) is given by (see also Fig. 12):

3 xch7 v ï�í��P� 3 .7 � 3 07 � (12)
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As can be easily verified that the pair � 3 .7 � 3 07 � can be computed from � 3 net7 � 3 xch7 �
and vice

versa. Moreover it should be observed that 3 xch7 is nonnegative but on the other hand it does not
prescribe a certain net flux direction.
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Figure 12: Definition of exchange fluxes for bidirectional reaction steps showing forward and
backward flux for a) fixed exchange flux and varying net flux, b) fixed net flux and varying ex-
change flux.

Using 3 xch physiological assumptions that are frequently made for biochemical reaction steps
can be expressed as follows (cf. Fig. 5):

1. Irreversibility assumptions are usually made when large free energy differences are known
from the in vitro situation (i.e. ��� )X� ú

). Moreover irreversibility must always be assu-
med for fluxes entering or leaving the system. Clearly, irreversibility of step 8 is expressed
by 3 xch7 v ú

.

2. Rapid equilibrium is the counterpart of irreversibility. In this case the forward and back-
ward reaction takes place with a high rate compared to the net flux rate: 3 xch7 � 3 net7 .

3. Finally it is useful for simulation purposes to study the effect of a 3 xch7 -variation, by setting3 xch7 to arbitrary values.

A simulation run should be parametrized in the � 3 net � 3 xch � coordinate system where 3 xch de-
notes the vector of all exchange fluxes. The stoichiometric equations and the assumptions made
on the exchange fluxes impose linear constraints on these coordinates. The formal representa-
tion of these constraints can be easily handled by extending the stoichiometric equation (5) to a
more general linear constraint equation:

4 cnstr �
� 3 net3 xch � v 5 cnstr
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4.6
�

Measurement Equations

Incorporating measured values requires the introduction of measurement equations. Again a ma-
trix notation is used where the measurement matrices

@
express which components of the state

vectors have been measured. The vectors F denote ��� � ��� � -distributed noise terms with sym-
metric and positive definite covariance matrices

�
. Usually the

�
-matrices have diagonal shape,

i.e. the measurements are assumed to be independent. With this notation we now get

the flux measurement equation < v @BA � 3 net � F A
the label or isotopomer measurement equation

= v @BC � 1 � F C
the pool size measurement equation

? v @BD � 2 � F D (13)

Clearly, the pool size measurement equation is only required in the isotopically instationary case.
In this situation the label measurement equation must additionally be extended by a discrete time
parameter.

When NMR multiplet analysis is used for isotopomer measurement, the isotopomer mea-
surement matrix expresses how the measured values correspond to to the fractional amounts of
isotopomers. In the example illustrated by figure 2 the observation is composed from singulet
peaks � � � � &�� � � , doublet peaks C � � C &Ù� C � and a triplet peak F & . Moreover the sum of all percen-
tages must be � . The correspondence between these measured quantities and the isotopomer
fractions is given by (cf. [KCS93, JSJ H 93]):

�k� '`�X�
������������
= =d=c=d= =d=d="c"d"d" = = " ""c" = " "d"d" "" = "d" " = " ""c"d"d" "d" =d="c"d" = "d" = ""c"d" = "d"d" ="c"d"d" "d"d" =

������������� '
������������
� _�_�_� _�_ !� _ ! _� _ !�!� ! _�_� ! _ !� !�! _� !�!�!

������������� �
������������
=� !� -� 4� !� -� 4� -

������������� ���
Interestingly this �@� is not a full rank matrix but there remains only one degree of freedom do
determine all isotopomer fractions from the measurements. Its kernel is generated by the vector�>� � ¿�� � � � � � ¿	� � � � � � � � � , i.e. the isotopomers z Ñ ú�úðú , z Ñ � ú�ú , z Ñ úðú � and z Ñ � ú � cannot be separa-
ted (compare to section 2.2).

On the other hand if mass spectroscopy is used isotopomers can only be distinguished by
their total mass so that measured quantities � ) � � � � � & � � � are obtained. We then have:������ =c= =c=d= =d=d== "d"d"d" "d"d"" = = " = "d"d"" "d" = " =d= "" "d"d"d" "d" =

� ����� '
������������
� _�_�_� _�_ !� _ ! _� _ !�!� ! _�_� ! _ !� !�! _� !�!�!

������������� �
������ =� _� !� -� 4

� �����
This is obviously much less information which explains why NMR is in principle superior to
mass spectroscopy. However, both methods can be combined with the time-consuming chemical
degradation technique which enables a complete isotopomer analysis to be performed [IL87,
DRM H 93].
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4.7
�

Flux Estimation

In the general situation flux estimation cannot be achieved explicitly like in section 4.4 or graphi-
cally using the graphical superposition technique as demonstrated in Fig. 11 because the number
of unknown parameters is too large for reasonably complex networks (cf. section 4.1). In this
situation a nonlinear regression approach using the familiar least squares estimator is appropria-
te [BS82, SW89]. Knowing that 1 is always a function of 3 by Eq. (10) this flux estimate is
obtained as the solution of the nonlinear programming problem:

minimize �T� 3 � v� ~  < ¿ @i¡ � 3 net  ~  &¢¤£ �  ~  = ¿ @ � � 1 � 3 �  ~  &¢¦¥
constrained by

4 cnstr �
� 3 net3 xch � v 5 cnstr

and 3 ù§� (14)

where  ~  ¨¤ �  &¢ v©¨ � � � Ã � � ¨ denotes the squared weighted norm corresponding to a covarian-
ce matrix

�
. In the case where only flux measurements are available this is exactly the linear

estimate for flux estimation from extracellular flux data proposed in [VS93] that can be directly
computed using the Gauss-Markov theorem [Arn90].

In the isotopically instationary state the situation becomes more complex because usually not
all pool sizes can be measured. Consequently, they have also to be estimated from the measured
data, i.e. �P� 3 � in Eq. (14) now becomes �T� 3 � 2 � and the sum of squares has to be extended by
the term  �  ? ¿ @iª � 2  ~  &¢¦« .

This shows that instationary experiments require more information compared to the statio-
nary case. This problem is usually treated by assuming fixed sizes for all small pools from li-
terature data [FHBS90, WGKF H 92, CFGC95] while taking measurements for the large pools
[WGKF H 92]. This strategy seems to be justified because the model outcoume is often very in-
sensitive with respect to small pool sizes [WGKF H 92, CFGC95].

4.8 Solution of the Flux Estimation Problem

In the majority of applications the flux estimation problem is solved explicitly as has been done
in section 4.4. However this approach cannot in general make use of the complete measurement
information. The same holds for the graphical approach (Fig. 11) that is strongly limited to di-
mensions one and two. On the other hand the general numerical solution of the flux estimation
problem (14) poses several problems:

1. The linear constraints have to be resolved. This can be done with appropriate numeri-
cally stable matrix factorization techniques like singular value decomposition [PFTV88,
Val91].

2. Exchange fluxes as defined by Eq. (12) are only piecewise differentiable functions. This
problem can be treated with a derivative free algorithm like the well known Nelder Mead
simplex algorithm at the cost of large computation times as has been done in [MdGW H 95].

3. The inequality constraints 3 ù
�
have to be strictly obeyed. An ad hoc solution to over-

come this problem is simply to replace 3 7 by some ¬ &7 which is always positive and then
to minimize over ¬ 7 . However, this will significantly decrease numerical stability.

4. While in older papers the minimimum of �P� 3 � has been found manually by trial and er-
ror [KKW79, SB79] iterative optimization algorithms are now used [WGKF H 92, KCS93,
MdGW H 95]. A modern successive quadratic programming algorithm that can simulta-
neously handle the constraints is developed in [Sie95].
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5. In many cases the computational complexity of the instationary flux estimation problem
has been overcome by more or less dramatical simplifications of the network [FHBS90,
TDHW91, SSH92, CFGC95].

4.9 Statistical Analysis

Statistical analysis is required to judge the quality of the measured data and the obtained estima-
tes. Several well established statistical methods can be applied for this purpose:G The ability of the model to describe the measured data set can be tested [RB85, WGKF H 92,

RDC H 95, FR95].G Redundancies in the measured data set can be used to detect measurement errors [Val91,
vHRH H 94, Wie95a].G Sensitivity analysis of the model output with respect to the input parameters is used to
study their influence [CB83, Lee93, CFGC95, CB95, Wie95b].G The sensitivity of the estimated parameters with respect to the measured quantities show
how the estimates are influenced by single measurements [Wie95b].G The approximate covariance matrix for the estimated parameters can be computed and
from this approximate parameter confidence regions can be constructed [RB85, KCS93,
Wie95b].

All sensitivities as well as the covariance matrix can be computed when the derivative of1 � 3 � from Eq. (7) with respect to 3 is known. It can be computed by implicit differentiation as
follows [Wie95b]: � v
� ; 7 3 7 � 6 7 � �T­ 1­ 3 A � � 1 inp � 6 A � 1 � 6 inpA �

Thus ­ 1 D ­ 3 can be computed using the same matrix factorization that has already been used
for computing 1 � 3 � in Eq. (10). This further emphasizes the use of direct methods instead of
an iterative solution of Eq. (7) (cf. section 4.2). A similar implicit differentiation formula can be
proven for the isotopomer system (9).

Finally, it should be mentioned that sensitivity analysis is only an approximative approach
to statistical analysis because the originally nonlinear model is replaced by its linearization. It
is well known that this can lead to serious extrapolation errors [BW88, Páz93]. Moreover it can
be shown [Sie95, Wie95c] that this effect will most likely occur when large exchange fluxes
are estimated. In the case where a graphical method is applicable (cf. section 4.8), nonlinear
confidence regions can be immediately derived from the graphical representation [Lee93, ZS94,
Wie95c]. A more general approach to estimate nonlinear parameter confidence regions that uses
nonlinear statistical methods is developed in [Wie95c].

5 Global Analysis of Stationary Labeling Systems

5.1 Problems of Global System Analysis

This section concentrates on the principal amount of information that can be obtained from me-
tabolic carbon labeling experiments. In this context the results of a parameter-fitting procedure
are always unsatisfactory for various reasons:
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1. Parameter-fitting produces local results, i.e. a global optimum can never be guaranteed.
In [WdG93] an example from the pentose phosphate pathway has been given that admits
for two alternative flux solutions both with good (local) statistical quality measures. An
even more complicated example is given in [ZS94] where either one or two solutions can
occur in a certain system state.

2. The result is an a posteriori result, i.e. it cannot be decided in advance (i.e. a priori) if the
measurements will contain sufficient information for flux determination.

3. The measurement of fractional labels or even isotopomers is a time-consuming procedu-
re. If redundancies in this input data can be predicted a priori this will save a lot of time
because some measurements do not have to be performed.

4. Any additional a priori characterization of the experiment outcome of an experiment can
be used for complexity reduction. This is of great importance when isotopomer systems
are considered.

Obviously, these questions are of great importance for the design and evaluation of experi-
ments. In the case of flux analysis from extracellular flux measurements alone we are confronted
with a linear system for which all questions posed above can be explicitly and efficiently ans-
wered [VS93, vHHH H 94, vHRH H 94]. On the other hand label balancing introduces algebraic
equations to the system so that more advanced methods have to be used for system analysis.
Interestingly many questions can be answered in this situation too.

5.2 Identifiability and Redundancy

The questions posed above are better known as identifiability and redundancy problems in con-
trol engineering [Wal87]. In this context the central problems are:

Identifiability a posteriori , which means that all fluxes 3 can be uniquely determined from a
given data set � < �>= � .

Identifiability a priori , which means that all fluxes 3 can be uniquely determined whatever
the outcome � < �*= � of the experiment will be.

Redundancy of measurements , which means that there exist relations ®>� < �>= � v � that hold
independently of the non-measurable fluxes in 3 .

In any case the measurements must be assumed to be taken without error (i.e. FE¯ v FE° v � ).
This means no restriction because sensitivity can be studied later by using the methods presented
in section 4.9.

It may be observed that Eqs. (8) when combined with Eq. (13) represents a general para-
metrized linear state space model with measured variables

=
. For such models many results on

identifiability have been proven [DdA87]. On the other hand the stationary case of Eq. (7) has
never been considered explicitly because the number of measurements was too low to obtain
significant results. This makes stationary flux identification essentially a new problem.
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5.3
±

Algebraic Methods

Explicit and sometimes quite long-winded algebraic calculations for deriving explicit flux so-
lutions of metabolic carbon labeling systems can be found in numerous publications [Coh83,
MSJ88, Lee93, MCDB94, STM H 94]. In each case the solution strategy is highly application
specific and based on various simplifying assumptions on the network structure. The usual as-
sumption is that all reaction steps are either irreversible or in rapid equilibrium [STM H 94, ZS95].
Moreover whole metabolic pathways like the pentose phosphate pathway are found to be lum-
ped to one reaction step [PSMC93, STM H 94]. If any new equation is inserted in the system
all computations have to be reworked and most possibly a completely new solution strategy
has to be found. This will almost surely happen when exchanging reactions are added because
the complexity of networks is in a close relation to the number of cyclic pathways they contain
[KP92, Mes93].

A general approach to algebraic identifiability analysis presented in [Wie95a] and [Wie95b]
is based on network simplification algorithms [RML93, GS91] and computer algebraic methods
[CLO92, BW93] (see [FR95] for more empirical approach). The general idea is to automatically
derive explicit equations relating fluxes to label measurements. In particular it can be tried to ex-
press the unknown fluxes in terms of measured quantities as has been done in section 4.4. Simi-
lar computer algebraic algorithms for multivariate polynomial equations have been successfully
applied to identifiability problems in control engineering [LR87], solution of stationary bioche-
mical reaction systems [MMN89] or stationary optimization of fermentation processes [PT95].
The details would exceed the scope of this text so that only the results that come out for the ex-
ample are given here.

5.4 Analysis of the Example System

For the example system it has been already proven by Eq. (11) that all fluxes are identifiable a
priori if - .� � - .n and

% � ��% & are known. Clearly, it follows the identifiability a posteriori. On the
other hand the following redundancy relations can be proven to hold independent of the actual
fluxes - .� � - .& � - 0& � - .n :ú v % � Á � ¿ % && ¿ % � � % &ú v % � Á & ¿ % & Á � ¿ % � � Á �

ú v % & ¿ % && ¿ % � � % ���ú v % � Á ��� ¿ÂÁ � % ���
From this we immediately obtain

Á � v � % && � % � ¿ % &7� D % �Á & v � % & Á � � % � ¿ÂÁ � � D % � % ��� v % && � % � ¿ % &
Á ��� v % �+� Á � D % �

while
%>)�)Ù� Á )�) follow from Eq. (3). Consequently,

% � and
%�&

contain all information on fluxes that
can be obtained by label measurements. All the other label as well as isotopomer fractions are
redundant! This example shows that isotopomer measurements need not increase the available
information on intracellular fluxes as was the case in the example from section 1.8.

6 Application to Corynebacterium glutamicum

6.1 Example Organism and Measured Data

Corynebacterium glutamicum has always been of great interest for amino acid production, which
is closely coupled to the central metabolic pathways, i.e. glycolysis, pentose phosphate pathway
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and citric acid cycle. Thus stationary flux analysis is a promising diagnostic method in the con-
text of metabolic engineering for amino acid production. The C. glutamicum strain MH20-22B
studied in [MdGW H 95] is known as a lysine producer. Since in this text the focus is on the prin-
ciples of flux analysis more details on the biology of this organism can be taken from [EdG95].
The following results are taken from [MdGW H 95].

C. glutamicum MH20-22B was cultivated under lysine producing conditions with a dilution
rate of 0.1 h Ã � in continuous culture. In this situation the total substrate uptake rate was 1.49
mmol/ (g � h) (dry cell mass) from which 18.3 % lysine was obtained. Table 1 presents all mea-
sured extracellular fluxes that are normed to a 100 % substrate influx for convenience. For cal-
culating the biomass effluxes a biomass composition similar to that of [NIS90] was assumed.

Intracellular fractional labels were measured using the decoupling technique described in
section 2.4. To obtain a (nearly) equilibrated labeling state in the protein fraction three cell resi-
dence times were taken for incubation with [1- ��� C]glucose corresponding to a washout correc-
tion factor of ��� ú õ (cf. Eq. (1)). The separated amino acids and the corresponding label enrich-
ment can be taken from Table 2. All measured NMR spectra have a high quality, an example is
shown in Fig. 7. From these spectra a measurement error below the values given in Table 2 can
be asserted.

Flux Measured
Value [%]

Substrate uptake:ÇÉß 
 100.0
Biomass effluxes:Ç Ð � 1.3ÏÍÐ � 0.5ÇÉ� � 0.9�$²�á 18.0�$²�á´³ 23.0�ÍÌ ��³ 1.8áÓz õ � 1.0áÓz õ �¶µ 4.9� ÷ Ç 7.0� ÷ Ç µ 1.2ã ��� 11.6
Product formation:ß ²	�E³ 18.3
ÀãÉ( 275.1

Table 1: Extracellular fluxes measured in continuous culture of C. glutamicum All values are
normed to a 100 % glucose uptake rate of 1.49 mmol/ (g � h) (dry cell mass) Metabolite abbre-
viations can be taken from Fig. 13 and are assumed to be self explaining (see [MdGW H 95] for
details). ³ indicates a flux coupled to CO

&
formation. µ indicates a flux coupled to CO

&
refixa-

tion.

6.2 Biochemical Network

For shortness the detailed biochemical reaction equations in the formal notation introduced in
section 3.2 are not reproduced here and only the underlying metabolite network used for flux
estimation is presented in Fig. 13. Reaction steps that have been assumed to be bidirectional
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Figure 13: Biochemical network used for flux analysis in Corynebacterium glutamicum MH20-
22B under lysine producing conditions (data from [MdGW ¹ 95]). Estimated stationary net fluxes
are given in rectangular boxes while the associated exchange fluxes for bidirectional reaction
steps given in rounded boxes are taken relative to the corresponding net fluxes, i.e. the valuesº xch » º net are represented. Effluxes to biomass (see Table 1) have been left out for simplicity.
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Carbon Measured Estimated Measurement
Atom Value [%] Value [%] Precision [%]¼$½K¾À¿ÂÁ

2.0 2.5 1.0¼$½K¾À¿ÄÃ
3.6 2.0 1.0¼$½K¾À¿ÄÅ
2.0 1.9 1.0¼$½K¾À¿Z½

16.7 15.3 2.0ÆTÇ ¾À¿�Á
2.9 2.7 0.2ÆTÇ ¾À¿ÈÃ
2.6 2.6 0.1ÆTÇ ¾À¿ÈÅ

26.7 26.3 0.2¾ ²0É ¿ÈÃ 3.0 2.7 1.0¾ ²0É ¿ÈÅ 26.4 26.3 0.5ÇPÊËÆ ¿ÄÃ
24.1 22.6 0.3ÇPÊËÆ ¿ÄÅ
11.1 9.8 0.5ÇPÊËÆ ¿Z½
28.1 26.3 0.6ÌuÇPÇ ¿ÈÃ
7.7 9.8 2.0ÌuÇPÇ ¿ÈÅ

20.9 22.6 2.0ÌuÇPÇ ¿[½
16.8 17.3 2.7Í ²[Î ¿ÄÃ 6.8 7.1 0.2Í ²[Î ¿ÄÅ 21.9 24.0 0.3Í ²[Î ¿Z½ 18.9 17.3 1.0Í ²[Î ¿ÄÏ 22.2 24.9 1.0Í ²[Î ¿ÄÐ 5.6 5.3 0.3ÑÒÌ ÃÓ¿ÂÁ
23.0 21.6 0.4

Table 2: Some fractional labels measured from protein hydrolysate of C. glutamicum compared
to values predicted by the balance equations with the estimated fluxes [MdGW ¹ 95]. The mea-
surement precision depends on the quality of the measured spectra. Labeled CO Ô was measured
by mass spectroscopy.
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are labeled therein by an additional box with rounded edges. Irreversibility assumptions were
made on the basis of thermodynamic considerations. The scrambling steps from Fig. 4 have been
introduced in the citric acid cycle and in the glyoxylate shunt. Both lysine production pathways
[SSK ¹ 91] have been incorporated.

A remark has to be made on the anaplerotic reaction section (cf. [Val91]). There are three
possible anaplerotic reaction steps catalyzed by PEP carboxylase, PEP carboxykinase and the
malic enzyme while even a fourth enzyme (pyruvate carboxylase) may be present [TMT79].
Only the PEP carboxykinase step is supposed to be reversible. The identifiability of the corre-
sponding fluxes from label measurements has been discussed in [Wie95b]. It turned out that for
the anaplerotic section only a combined net flux from the lumped phosphoenolpyruvate-pyruvate
pool to the oxaloacetate pool can be estimated accompanied by an exchange flux. Interestingly,
more details of anaplerotic fluxes would be identifiable if the malate labeling state were availa-
ble.

6.3 Achieved Results

The intracellular flux estimates (Eq. (14)) computed from the measured data are shown in Fig. 13.
Moreover the simulated labeling state corresponding to the estimates is presented in Table 2. The
table shows that all label measurements are well reproduced by the simulation run. The measu-
red fluxes are even better reproduced but are not given here for shortness. From computed stati-
stical quality measures given in [Sie95] it becomes clear that all net fluxes are well determined.
On the other hand the estimated exchange fluxes are only accurate within an order of magnitude
(compare to section 4.9). However, it is possible to decide if a reaction step is highly reversible
or rather unidirectional which is the principal goal of the analysis.

Some remarkable facts that are closely linked to modeling and the general stationary flux
determination problem shall be pointed out. Further biological implications are discussed in
[EdG95]:

1. Bidirectional reaction steps frequently occur and can be quantitated in vivo which seems
to be impossible in vitro [FCA ¹ 93]. Consequently, the consideration of such steps in the
modeling process is absolutely necessary. This in turn requires a large amount of measu-
rement data for estimating all unknown parameters.

2. All fluxes are estimated without the incorporation of energy balances. Thus results on the
cellular energy metabolism can be derived from the achieved quantitative results. For ex-
ample it turns out that there is an excess NADHP formation for which a consuming reacti-
on is not yet known [MdGW ¹ 95]. A balanced NADPH formation was previously assumed
in [Val91].

3. The exchange rate of the anaplerotic reaction section indicates a futile cycle which once
more stresses the importance of bidirectional reactions (cf. [dHBS81, CMCM ¹ 94]).

7 Conclusion and Future Prospects

Stationary flux determination is proven to be an invaluable diagnostic tool in the context of me-
tabolic engineering. When sufficient measurement data is available it can be carried out with
almost no critical assumptions on the living system like e.g. energy balancing. For this purpose
fractional labeling data from carbon tracer experiments is an important source of information in
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addition to direct extracellular flux measurements. Using this source enables not only net flu-
xes to be estimated but also exchange fluxes of bidirectional reaction steps. These in turn allow
to distinguish between equilibrating and irreversible reaction steps in vivo. This was illustrated
successfully for the complete central metabolism of C. glutamicum in [MdGW ¹ 95]. If isotopo-
mer measurements are available this may even increase the amount of information but it need
not to be so in every case.

From general modeling considerations it becomes clear that as many information sources as
possible should be used for flux determination. In this context isotopomer measurements are
a promising source of information that is currently not extensively used. Modeling and data
analysis with isotopomer systems will require additional efforts for solving the associated high
dimensional numerical problems. The same holds for the statistical analysis of the estimated
parameters which poses a difficult nonlinear statistical problem [Sie95]. Finally, from the view-
point of global system analysis, general methods for network reduction, identifiability and red-
undancy analysis have to be developed that allow to judge the amount of information that can be
achieved with a certain experiment. Finally appropriate software tools for stationary flux ana-
lysis are required when this technique is to be established in interdisciplinary research teams
[Wie94a, Wie95d].

From the experimental viewpoint the measurement procedures have to be further accelerated
to establish stationary flux analysis by Õ×Ö C tracer experiments as a routine procedure. Only the
evaluation of a series of experiments under varied physiological conditions can bring a true in-
sight into metabolic regulation [VS93, Jor95, SSdG ¹ 95]. Similarly, the comparison of different
strains which are distinguished by well known genetic modifications will demonstrate the role
of a certain enzymatic step within a complex network. Finally, stationary flux analysis — being
free from assumptions on the biological system to a large degree — may help to find out how
enzymes really work in vivo, i.e. phenomena like channeling, enzyme complexes or scrambling
[Mat93, SSMS93] may be investigated in more detail when sufficient measurement information
is available.
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