13CFLUX2 Fact Sheet

- A complete modeling and data evaluation environment for 13C-metabolic flux analysis (13C-MFA)
 - A new software based on new ideas: does not share a single line of code with old 13CFLUX
 - Provides highly efficient implementations of the Cumomer and EMU simulation algorithms
 - Flexible description of every possible measurement configuration
 - High performance simulation of isotope labeling experiments
 - A priori (optimal) experimental design for isotope labeling experiments
 - Flux estimation with subsequent detailed statistical analysis
 - Graphical network editor Omix as modeling front-end for editing of metabolic and isotope transition networks as well as measurement specifications (see http://www.13cflux.net/omix)
 - Visualization of results directly on the network drawing using Omix or in MATLAB™

- New high performance algorithms for 13C-MFA
 - Flux analysis for large metabolic network models
 - For typical metabolic network models 10² to 10⁴ times faster than the old 13CFLUX software
 - Optimal choice of simulation method (Cumomer, EMU) depending on measurement specifications
 - Interpreter-based network generator provides fast startup times
 - Topological analysis of network graphs and optimal network reduction
 - Linearized statistical analysis and nonlinear statistical analysis
 - Improved numerical precision (especially for larger networks)
 - Support for SMP machines (parallel parameter fitting)

- FluxML (XML) documents for metabolic and isotope network specification
 - Extensible and more flexible than old FTBL file format
 - Powerful conversion tool FTBL2FluxML to support older 13CFLUX models
 - Free-form constraint equations using MathML or textual notation
 - Built-in support for MS, MS/MS, 1H-NMR, 13C-NMR measurements
 - Support for arbitrary measurement equations using MathML or textual notation (generic measurements)

- Arbitrary precision by symbolic and algebraic methods
 - Symbolic handling and analysis of stoichiometric constraints
 - Export of stoichiometric equations
 - Exact solutions (rational number arithmetic) and symbolic solutions
 - Exact derivatives for faster convergence of gradient-based optimization algorithms
 - Exact parameter sensitivities based on symbolic differentiation
 - Useful for studying numerical error propagation/ analysis of numerical problems

- Advanced optimization toolbox providing different optimization algorithms
 - SQP-, NLP-based optimization
 - Primary optimizer is the advanced ipopt (http://projects.coin-or.org/ipopt)
 - Easily adaptable to commercially available optimization library NAG-C (http://www.nag.co.uk)
 - Stochastic (Monte Carlo) methods

- Interfaces and Visualization
 - Data exchange between applications is established using XML and HDF5 documents
 - All applications support stdin/ stdout operation (i.e. applications act as filters)
 - Well-suited for cluster computing, e.g. by using (MPI-based) wrappers
 - Applications export numerical data as HDF5 files (→ MATLAB™) and CSV (Spreadsheet)
 - FluxML can be imported/ exported by the graphical network editor Omix
 - Symbolic and numerical data can be imported, post-processed and visualized in MATLAB™
 - A fully functional, tailor-made simulator can be exported as MATLAB™script

- Tidy and robust C++/ Python codebase
 - Consists of 130.000+ lines of portable and validated ISO/ ANSI C++
 - Compilable on state-of-the-art Linux and Unix platforms (tested for Ubuntu, Debian, OpenSuSE, Fedora)
 - Important XML conversion tasks are done using Python
 - Revision control/ SCM based on Subversion (http://subversion.apache.org)
 - Build environment based on the GNU build system (autoconf, automake)
 - Comprehensive handling of errors and exceptions, not affecting performance of the production code: built-in automatic debugging, logging, assertions and stack traces

Availability of features depends on version